Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea Vehicles to Study Formation of Gold and Other Precious Metals On the Pacific Ocean Floor

17.07.2006
An international team of scientists will explore the seafloor near Papua New Guinea in the western Pacific Ocean later this month with remotely operated and autonomous underwater vehicles, investigating active and inactive hydrothermal vents and the formation of mineral deposits containing copper, gold and other commercially valuable minerals.

The cruise is a joint expedition between Woods Hole Oceanographic Institution (WHOI) and Nautilus Minerals Inc. of Vancouver, British Columbia, a mining exploration company that holds exploration leases in the Bismarck Sea within the territorial waters of Papua New Guinea. Nautilus is the first firm to commercially explore the ocean floor for economically viable massive sulfide deposits, and is interested in understanding the size and mineral content of the seafloor massive sulfide systems.

The joint expedition includes a 32-day WHOI research program funded by the U.S. National Science Foundation to the Pacmanus vent sites in the Eastern Manus Basin. The remotely operated vehicle Jason will be used to survey and map the vent areas around an Ocean Drilling Program hole drilled in 2000. Nautilus will fund an additional 10-day program to explore and sample the Vienna Woods sulfide prospects on the Manus Ridge, northwest of the Pacmanus study area.

Geophysicist Maurice Tivey of WHOI will head the 42-day expedition, which begins July 21 from Rabaul, Papua New Guinea, aboard the research vessel Melville, operated by the Scripps Institution of Oceanography. Tivey and geochemists Wolfgang Bach of the University of Bremen (previously at WHOI) and Jeff Seewald and Meg Tivey of WHOI will map, collect samples and take high-resolution images of the seafloor at several locations within the territorial waters of Papua New Guinea. The cruise ends September 1 at Suva, Fiji.

Tivey and his co-investigators are interested in the geochemistry and structure of the seafloor and the formation of mineral deposits along mid-ocean and back-arc ridge systems, where new ocean crust is formed. The team will use the remotely operated vehicle Jason and the Autonomous Benthic Explorer (ABE), both developed and operated by WHOI and veterans of many expeditions to hydrothermal vent sites around the world.

Two areas will be explored, one in the Eastern Manus Basin in the Bismarck Sea known as the Pacmanus vent site and the other Vienna Woods, an area of exposed massive sulfide on the Manus Ridge, a small mid-ocean ridge spreading center to the northwest of the Pacmanus site. The Pacmanus site is in 1,700 meters of water (about 4,500 feet), while the Vienna Woods site is in 2,500 meters (about 8,000 feet).

“There are differences in the compositions of hosts rock at the two areas, as well as differences in the geologic and tectonic settings,” Tivey, an associate scientist in the WHOI Geology and Geophysics Department, said. In the Eastern Manus Basin at the Pacmanus vents, the host rocks are felsic or silica-rich compared to the more typical mid-ocean ridge basalt found at the Vienna Woods site, providing a contrast in host rock geochemistry.

“It has been suggested that the difference in the chemistry of the host rock is reflected in the composition of the sulfide chimneys and deposits, with deposits hosted in the more silica-rich rocks being richer in gold and other precious metals” Tivey said. “However, there are other factors that can affect vent fluid and sulfide deposit composition. For example, some hydrothermal fluids from back-arc sites appear to have a signature indicative of a magma chamber source, with magmatically-derived fluids possibly affecting the hydrothermal systems.”

The research program is designed to determine what factors may be affecting vent deposit chemistry, Tivey said. In addition to sampling the deposits and collecting fresh and altered host rock, the researchers will collect vent fluids using gas-tight samplers to study the possible influence of both magmatic volatiles and host rock composition. They will also map the seafloor, and below the seafloor using geophysical techniques, to better discern the geologic history and structure of the sites.

Tivey and other scientists and students from WHOI will be joined by colleagues from Towson University, University of South Florida, Bridgewater State College and the U.S. Geological Survey, the University of Bremen in Germany, Seoul University in South Korea, the Commonwealth Scientific and Industrial Research Organization (CSIRO) of Australia, the Geological Survey of Papua New Guinea, the University of Papua New Guinea, and Nautilus Minerals.

The expedition is funded by the National Science Foundation, Nautilus Minerals Inc., WHOI and the respective research agencies of the participants.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>