Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find that hunting can increase the severity of wildlife disease epidemics

A new study by University of Georgia researchers shows that the common practice of killing wild animals to control disease outbreaks can actually make matters worse in some cases.

In a study published the August 7 edition of the journal Proceedings of the Royal Society B: Biological Sciences, post-doctoral researcher Marc Choisy and Pejman Rohani, associate professor of ecology and UGA Biomedical and Health Sciences Institute researcher, create a detailed mathematical model that demonstrates how the combination of hunting and factors such as birth season and mating season influence disease outbreaks. Their results suggest that wildlife managers and health officials use caution when considering hunting or culling as a means to manage diseases as diverse as rabies, tuberculosis and even avian influenza.

“One consequence of hunting that we show in this paper is that it can increase the probability of dying from the disease,” Choisy said. “It can give you results that are contrary to what you expect.”

The reasoning behind killing wild animals to control disease outbreaks is simple: fewer animals should result in reduced transmission of disease. Hunting has been used to control badger populations in England, rabies in European foxes and chronic wasting disease in deer and elk populations in the American West. The researchers note that in each instance, disease outbreaks have worsened in response to the hunting.

One reason the policies failed, Choisy and Rohani said, is that they didn’t take into account an ecological principle known as compensation. When a portion of the animal population is reduced, those that survive are left with more resources such as food and shelter. As a result of the newly plentiful resources, the death rate decreases and the birth rate increases, compensating – and sometimes overcompensating – for the loss.

Killing wild animals can also increase the proportion of the population that’s susceptible to disease by removing those individuals who have contracted a virus but have developed lifelong immunity as a result of their infection.

The researchers found that compensation and lifelong immunity conferred by a virus interact so that the timing of mating and birth seasons determine whether hunting increases or decreases disease prevalence. They found that an outbreak is barely affected when hunting occurs between mating and birth season while an outbreak lessens when hunting occurs during the birth season. An outbreak increases dramatically when hunting occurs between the birth season and the next mating season.

The effect can be so dramatic that in some cases hunting can increase not only the proportion of infections and deaths, but also the absolute numbers. For example, their model shows that in the case of swine fever, a highly infectious disease threatening boars and pigs in Europe, hunting can increase the number of infected individuals by twenty five percent.

“If we want to preserve the hunted population, we should be careful about when we schedule the hunting season compared to birth season because if it’s too early or late, it can drive the population to extinction,” Rohani said. “If we want to control a disease in the host population, the timing of the hunting season can be chosen to be optimal for that.”

Sam Fahmy | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection

24.10.2016 | Health and Medicine

Microbe hunters discover long-sought-after iron-munching microbe

24.10.2016 | Life Sciences

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

More VideoLinks >>>