Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How parachute spiders invade new territory

13.07.2006
Researchers have developed a new model that explains how spiders are able to ‘fly’ or ‘parachute’ into new territory on single strands of silk – sometimes covering distances of hundreds of miles over open ocean. By casting a thread of silk into the breeze spiders are able to ride wind currents away from danger or to parachute into new areas. Often they travel a few metres but some spiders have been discovered hundreds of miles out to sea. Researchers have now found that in turbulent air the spiders’ silk moulds to the eddies of the airflow to carry them further.

The team at Rothamsted Research, a sponsored institute of the Biotechnology and Biological Sciences Research Council (BBSRC), realised that the existing 20 year old models to explain this phenomenon – known as ‘ballooning’ – failed to adequately deal with anything other than perfectly still air. Called Humphrey’s model it made assumptions that the spider silk was rigid and straight and the spiders were just blobs hanging on the bottom. It could not explain why spiders were able to travel long distances over water, to colonise new volcanic islands or why they were found on ships. The new Rothamsted mathematical model allows for elasticity and flexibility of a ballooning spider’s dragline – and when a dragline is caught in turbulent air the model shows how it can become highly contorted, preventing the spider from controlling the distance it travels and propelling it over potentially epic distances.

Dr Andy Reynolds, one of the scientists at Rothamsted Research, explained: “Researchers knew that spiders could use ballooning to cover long distances but no previous model has adequately explained how this worked. By factoring in the flexibility of the dragline that the spiders cast into the breeze have shown how it can contort and twist with turbulence, affecting its aerodynamic properties and carrying its rider unpredictable distances. Spiders are key predators of insects and can alleviate the need for farmers to spray large quantities of pesticide. But they can only perform this function in the ecosystem if they arrive at the right time. With our mathematical model we can start to examine how human activity, such as farming, affects the dispersal of spider populations.”

Dr Dave Bohan, a member of the research team, commented on how mathematical models and traditional bioscience observation come together: “To really understand the factors at play on ballooning spiders we need to watch them in action. We have already observed spiders ballooning through still air and we are now planning to take them into a wind tunnel to watch how they handle turbulent flows. Once we have done that we can refine the model further.”

Professor Julia Goodfellow, Chief Executive of BBSRC, the organisation which funded the project, said: “The exciting thing about this research is that it not only explains a long-standing question but also shows how ecologists, mathematicians and physical scientists can draw on each others strengths. The future face of bioscience is highly interdisciplinary and will require more collaboration between, for example, mathematicians and ecologists working together to answer biological questions.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk/media/pressreleases/06_07_12_spiders.html

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>