Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How parachute spiders invade new territory

13.07.2006
Researchers have developed a new model that explains how spiders are able to ‘fly’ or ‘parachute’ into new territory on single strands of silk – sometimes covering distances of hundreds of miles over open ocean. By casting a thread of silk into the breeze spiders are able to ride wind currents away from danger or to parachute into new areas. Often they travel a few metres but some spiders have been discovered hundreds of miles out to sea. Researchers have now found that in turbulent air the spiders’ silk moulds to the eddies of the airflow to carry them further.

The team at Rothamsted Research, a sponsored institute of the Biotechnology and Biological Sciences Research Council (BBSRC), realised that the existing 20 year old models to explain this phenomenon – known as ‘ballooning’ – failed to adequately deal with anything other than perfectly still air. Called Humphrey’s model it made assumptions that the spider silk was rigid and straight and the spiders were just blobs hanging on the bottom. It could not explain why spiders were able to travel long distances over water, to colonise new volcanic islands or why they were found on ships. The new Rothamsted mathematical model allows for elasticity and flexibility of a ballooning spider’s dragline – and when a dragline is caught in turbulent air the model shows how it can become highly contorted, preventing the spider from controlling the distance it travels and propelling it over potentially epic distances.

Dr Andy Reynolds, one of the scientists at Rothamsted Research, explained: “Researchers knew that spiders could use ballooning to cover long distances but no previous model has adequately explained how this worked. By factoring in the flexibility of the dragline that the spiders cast into the breeze have shown how it can contort and twist with turbulence, affecting its aerodynamic properties and carrying its rider unpredictable distances. Spiders are key predators of insects and can alleviate the need for farmers to spray large quantities of pesticide. But they can only perform this function in the ecosystem if they arrive at the right time. With our mathematical model we can start to examine how human activity, such as farming, affects the dispersal of spider populations.”

Dr Dave Bohan, a member of the research team, commented on how mathematical models and traditional bioscience observation come together: “To really understand the factors at play on ballooning spiders we need to watch them in action. We have already observed spiders ballooning through still air and we are now planning to take them into a wind tunnel to watch how they handle turbulent flows. Once we have done that we can refine the model further.”

Professor Julia Goodfellow, Chief Executive of BBSRC, the organisation which funded the project, said: “The exciting thing about this research is that it not only explains a long-standing question but also shows how ecologists, mathematicians and physical scientists can draw on each others strengths. The future face of bioscience is highly interdisciplinary and will require more collaboration between, for example, mathematicians and ecologists working together to answer biological questions.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk/media/pressreleases/06_07_12_spiders.html

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>