Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midgets and giants in the deep sea

12.07.2006
How is the deep sea like a desert island? It sounds like a child's riddle, but it's actually a serious scientific question with implications for both terrestrial and marine biology. Biologists have long observed that when animals colonize and evolve on isolated islands, small animals tend to become larger while large animals tend to become smaller. Recent research led by MBARI postdoctoral fellow Craig McClain suggests that a similar trend affects animals as they adapt to life in the deep sea. McClain will present a summary of these findings today at the 11th International Deep-Sea Biology Symposium in Southampton, England. A full article is in press in the peer-reviewed Journal of Biogeography.

Biologists ever since Charles Darwin have noted that when animals colonize an isolated island, after millions of years they may evolve into entirely new species that look very different from the original colonizers. For example, a population of mammoths isolated on the Channel Islands of Southern California developed into a new species that weighed only one tenth as much as their relatives on the mainland. Conversely, on some Caribbean islands, tiny shrews evolved into 30-centimeter-long (1-foot-long) "monsters." As these examples illustrate, small animals on islands often grow larger, while large animals become smaller.

Over the last few decades, this general trend (small animals get larger and large animals get smaller) has become known as the "island rule." However, scientists are still debating the rule's applicability and especially its possible causes. For example, animals colonizing an island might struggle to survive in a smaller habitat with limited food, but they might also benefit from fewer predators and less competition for food. All of these factors could influence how an animal's body size evolves over long periods of time.

As a marine biologist, McClain has long been fascinated by deep-sea animals that have evolved into forms much larger or smaller than their shallow-water relatives. However, in looking through the scientific literature, he found contradicting observations and explanations for how these deep-sea midgets and giants could have evolved. Island-colonization studies seemed to offer a useful analogy, since the deep sea has been periodically colonized by animals from shallow water, just as islands are colonized by mainland animals.

In order to test the general applicability of the "island rule" to deep-sea animals, McClain and his coauthors, Alison Boyer and Gary Rosenberg, compared the sizes of marine snails in shallow and deep marine areas. Their overall goal was to compare the sizes of deep-water snails and their close relatives (other species within the same genus) in shallow water. To obtain enough data for statistical analysis, the researchers analyzed information on thousands of Atlantic marine snails, using a database Rosenberg created.

The scientists used three different statistical methods to compare the sizes of snails living in deep (below 200 meters depth) and shallow (less than 200 meters depth) ocean areas. All three methods showed a statistically significant difference in size between deep and shallow snails. Specifically, shallow-water snails less than about 12 millimeters (1/2 inch) long tended to have larger deep-water relatives, while shallow-water snails larger than 20 millimeters (3/4 inch) tended to have smaller relatives in the deep sea. As McClain put it, "These snails seem to be evolving toward a particular size that represents a compromise between different selection pressures."

Overall, the results of this analysis suggest that snails adapting to life in the deep sea follow similar evolutionary trends as animals adapting to life on isolated islands. However, there is a lot of variation among individual species (both on islands and in the deep sea) because some species have unique lifestyles that create additional evolutionary pressures on body size. In addition, some of the evolutionary pressures proposed for islands may not apply in the deep sea. For example, the researchers point out that deep-sea snails are not likely to experience reduced habitat, predation, or competition compared with their shallow-water relatives.

Food, however, is definitely a limiting factor in the deep sea, with less food being available in deeper water and at greater distances from shore. Thus, McClain and his coauthors hypothesize that large snails evolved into smaller ones because the larger animals could not find enough food. On the other hand, tiny snails may have become larger in the deep sea because this gave them the ability to travel farther across the sea floor to look for food and to store surplus food when it was available.

Previous size studies of marine animals yielded contradictory results, some demonstrating a trend toward larger animals at greater depths and others showing smaller animals in deeper water. In keeping with the island rule, the current study suggests that both size trends may occur simultaneously, depending on the initial size of the animal being studied.

In addition to shedding light on a 30-year old marine science riddle, McClain's paper also suggests that terrestrial ecologists can learn from size variations in the ocean as well as on land. Specifically, it points out that marine snails appear to follow the "island rule," even though several of the classical "island-rule" factors (reduced habitat, predation, and competition) may not apply. This leads the authors to hypothesize that, although these three factors are certainly important in some cases, they may not be necessary to explain the general trend of size changes on isolated islands. They propose that food supply could be the primary factor controlling animal sizes on islands as well as in the deep sea.

Verifying this new hypothesis will require many more studies, both on land and in the ocean. As McClain notes, "One of the challenges of evolutionary biology is that we can't set up experiments to test many of our hypotheses—we simply have to collect as much field information as possible, then see what general trends emerge from the data." To this end, he and his fellow researchers hope to extend their size studies to other types of marine animals, including bivalves (such as clams) and cephalopods (such as octopus and squid). He also hopes that other marine biologists will be interested enough to perform similar studies on other deep-sea animals.

Kim Fulton-Bennett | EurekAlert!
Further information:
http://www.mbari.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>