Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jellyfish dominate fish in over-harvested Namibian waters

11.07.2006
By sampling sea life in a heavily fished region off the coast of Namibia, researchers have found that jellyfish have actually overtaken fish in terms of the biomass they contribute to this ocean region.

The findings represent a careful quantitative analysis of what's been called a "jellyfish explosion" after intense fishing in the area in the last few decades. The findings are reported by Andrew Brierley, of the University of St. Andrews, and his colleagues in the July 12th issue of the journal Current Biology.

An increasing abundance of jellyfish off Namibia had been noted for some time, but an analysis of this trend's effect on the ecosystem has been hampered by a lack of hard data on jellyfish abundance. The authors note that prior to their work, less formal observations had pointed to a striking change over time--for example, jellyfish are now so numerous in the region that they significantly interfere with fishing operations and industrial water-uptake systems. In addition, large jellyfish species such as Chrysaora hysoscella and Aequorea forskalea have become more commonly reported.

In their new work, the researchers sampled waters all along the Namibian shelf, between the borders of Angola and South Africa, in an area known as the northern Benguela. In the past, this region has offered abundant fish stocks, thanks largely to its being served by cool, nutrient-rich upwellings occuring along the continental shelf. The fish stocks, including sardines and anchovies, have been heavily exploited since the 1970s and have been strongly depleted in the process. Because fish and jellyfish essentially compete for similar nutrient resources, a dramatic decline in fish populations could theoretically contribute to a substantial shift in the abundance of jellyfish.

The researchers' findings indicate that jellyfish now account for significantly more biomass in the northern Benguela waters than do fish. Based on the data they obtained--by using scientific echosounders and trawl nets to sample jellyfish and fish in an area of over 30,000 nautical miles--the researchers estimate the total biomass of jellyfish in the region to be 12.2 million metric tons (mostly contributed by the large A. forskalea species), whereas the biomass of fish accounts for only 3.6 million metric tons.

In their report, the authors point out that jellyfish biomass has risen in numerous locations worldwide, possibly as a consequence of fishing. Climactic changes could also contribute to jellyfish population shifts.

The authors also note that jellyfish have few predators and that jellyfish abundance has significant potential consequences for oceanic ecosystems--such consequences include slowed or attenuated fish-stock recovery and alterations in the nature of carbon cycling.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>