Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jellyfish dominate fish in over-harvested Namibian waters

11.07.2006
By sampling sea life in a heavily fished region off the coast of Namibia, researchers have found that jellyfish have actually overtaken fish in terms of the biomass they contribute to this ocean region.

The findings represent a careful quantitative analysis of what's been called a "jellyfish explosion" after intense fishing in the area in the last few decades. The findings are reported by Andrew Brierley, of the University of St. Andrews, and his colleagues in the July 12th issue of the journal Current Biology.

An increasing abundance of jellyfish off Namibia had been noted for some time, but an analysis of this trend's effect on the ecosystem has been hampered by a lack of hard data on jellyfish abundance. The authors note that prior to their work, less formal observations had pointed to a striking change over time--for example, jellyfish are now so numerous in the region that they significantly interfere with fishing operations and industrial water-uptake systems. In addition, large jellyfish species such as Chrysaora hysoscella and Aequorea forskalea have become more commonly reported.

In their new work, the researchers sampled waters all along the Namibian shelf, between the borders of Angola and South Africa, in an area known as the northern Benguela. In the past, this region has offered abundant fish stocks, thanks largely to its being served by cool, nutrient-rich upwellings occuring along the continental shelf. The fish stocks, including sardines and anchovies, have been heavily exploited since the 1970s and have been strongly depleted in the process. Because fish and jellyfish essentially compete for similar nutrient resources, a dramatic decline in fish populations could theoretically contribute to a substantial shift in the abundance of jellyfish.

The researchers' findings indicate that jellyfish now account for significantly more biomass in the northern Benguela waters than do fish. Based on the data they obtained--by using scientific echosounders and trawl nets to sample jellyfish and fish in an area of over 30,000 nautical miles--the researchers estimate the total biomass of jellyfish in the region to be 12.2 million metric tons (mostly contributed by the large A. forskalea species), whereas the biomass of fish accounts for only 3.6 million metric tons.

In their report, the authors point out that jellyfish biomass has risen in numerous locations worldwide, possibly as a consequence of fishing. Climactic changes could also contribute to jellyfish population shifts.

The authors also note that jellyfish have few predators and that jellyfish abundance has significant potential consequences for oceanic ecosystems--such consequences include slowed or attenuated fish-stock recovery and alterations in the nature of carbon cycling.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>