Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare shellfish discovery

11.07.2006
After an absence of a thousand years, mussels have suddenly turned up again on Svalbard. A sensational find, certainly – but not evidence of climate change.

The two Norwegian scientists could hardly believe their eyes on a dive on the far west of the coast of Spitzbergen in autumn 2004.

Right in front of NTNU Professor Geir Johnsen’s underwater camera a sensation was waiting for him: a colony of mussels had managed to attach itself to Sagaskjæret – the Saga Skerry – in Isfjorden.

Not since the early Middle Ages, when the climate enabled the Vikings to settle Iceland, Greenland and Newfoundland, have mussels established themselves as far north as Svalbard.

For mussels to survive they need temperatures well above those that have been normal in Norwegian arctic waters for the past thousand years. These shells were at least a year old, which means that they had survived at least one winter on the skerry, a fact that impressed the scientists even more than the find itself.

Media sensation

The discovery soon found its way into the columns of the local weekly “Svalbardposten”, then to international web-sites and news agencies. Journalists tended to present the return of the mussels as evidence of global climate change.

According to biology professor Geir Johnsen, however, the find in itself has no such significance.

“If we had found mussels on Svalbard for ten years in a row, it would have been different,” he says. But in the summer of 2005 the scientists found no mussels on Sagaskjæret. It remains to be seen whether they will find any this year.

Changing sea temperatures

Johnsen and his colleagues at the Svalbard University Centre, the University of Tromsø and SINTEF Fisheries and Aquaculture published their theories about the mussel find last autumn.

Referring to satellite and oceanographic measurements, they concluded that the return of the shellfish is due to oscillations in the temperature of the sea, given that the North-Atlantic Current transported unusually large volumes of water northwards in 2002 and 2003 and that this led to higher than normal surface temperatures west of Svalbard. In the summer of 2004, the water turned colder again.

The oceanographic measurements also showed that warm, highly saline Atlantic water found its way into Isfjorden in 2002 and 2003. The water was driven into the fjord by high northerly winds – such warm water is another prerequisite for the growth of the shellfish on Sagaskjæret.

Migration route recreated

Transportation of larvae from the coast of Norway by the North Atlantic Current is the only possible solution to the mystery of where these mussels came from. In Trondheim, SINTEF’s Dag Slagstad was ready to help his colleagues with the aid of a mathematical model of the ocean. Slagstad carried out simulations that showed that in the summer of 2002, mussel larvae drifting from the Vesterålen area would have managed to reach Svalbard in 60 days as “hitchhikers” on the current.

“This is at the very limit of the time that the larvae would have needed before they had to attach themselves to rocks. But some of them have obviously survived the trip,” says Professor Johnsen, who points out that the rare find is yet more evidence that biology is a finely tuned instrument.

“This find shows just how rapidly biological changes can take place when the external environment changes.”

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>