Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals switch skeleton material as seawater changes

10.07.2006
Leopards may not be able to change their spots, but corals can change their skeletons, building them out of different minerals depending on the chemical composition of the seawater around them.

That's the startling conclusion drawn by a Johns Hopkins University marine geologist, writing in the July issue of the journal Geology.

Postdoctoral fellow Justin Ries and his collaborators say this is the first known case of an animal altering the composition of its skeleton in response to change in its physical environment. The aquatic animal's sensitivity to such changes poses questions about its evolutionary history, as well as the future of the ecologically important coral reefs that it builds, Ries said, especially at a time when seawater is changing in response to global warming and the buildup of carbon dioxide in the atmosphere.

A 2005 Ph.D. graduate of Johns Hopkins, Ries collaborated on the research with his dissertation advisors, Steven M. Stanley (now of the University of Hawaii) and Lawrence A. Hardie, professor in the Morton K. Blaustein Department of Earth and Planetary Sciences at Johns Hopkins.

Reefs are large underwater structures of coral skeletons, made from calcium carbonate secreted by generation after generation of tiny coral polyps over sometimes millions of years of coral growth in the same location. The team showed that corals can switch from using aragonite to another mineral, calcite, in making the calcium carbonate. They make that switch in response to decreases in the ratio of magnesium to calcium in seawater, Ries said. That ratio has changed dramatically over geologic time.

"This is intriguing because, until now, it was generally believed that the skeletal composition of corals was fixed," he said.

Ries spent two months growing three species of modern scleractinian corals (the major reef-building corals in today's seas) in seawater formulated at six different chemical ratios that have existed throughout the 480-million-year history of corals. He concocted this "artificial seawater" using "recipes" provided by Hardie, who several years ago discovered that the magnesium-calcium ratio in seawater has vacillated throughout geologic history between a low of 1.0 and today's 5.2, changing due to chemical reactions between seawater brine and rising magma along the ocean floor.

Ries placed his artificial seawaters in 10-gallon glass tanks, then added fragments of the three species of Caribbean reef-building corals. These were replete with colonies of polyps, which had spent the previous month in "equilibration tanks." Ries adjusted the chemistry of those tanks over 30 days, until their magnesium-to-calcium ratios were in line with the prescribed "ancient seawater" chemistries.

Two months later, Ries removed the coral skeletons and used X-ray diffraction to analyze their mineral composition. He was surprised to find that corals grown in the artificial seawater with a magnesium-to-calcium ratio less than 2-to-1 began producing a large portion of their skeleton with the calcite mineral, while those grown in unmodified modern seawater produced exclusively the aragonite mineral.

Though most scientists believed that corals were programmed to produce only the aragonitic form of calcium carbonate, he said, the team's work reveals that corals are far more flexible and able to vary at least a portion of their skeleton to growth favored by seawater chemistry. He postulates that this "mineralogical flexibility" provides corals with an "evolutionary advantage," as it would take more energy for corals to produce skeletons that are not favored by the chemistry of the seawater surrounding them.

The calcite-producing corals grown in artificial ancient water grew significantly slower than did the aragonite-producing corals grown in modern water.

"The reduction in the corals' rate of growth that accompanied their exposure to the chemically modified seawaters is further evidence of corals' extreme sensitivity to environmental change," Ries said.

"This is particularly significant given recently observed and predicted future changes in the temperature and acidity of our oceans ¬¬-- via global warming and rising atmospheric CO2 , respectively -- that will presumably have a significant impact on corals' ability to build their skeletons and construct their magnificent reefs," he said.

Corals are crucial to nearshore tropical ecosystems because the reefs they build are inhabited by tens of thousands of marine animals, plants, algae and bacteria that make up the coral reef ecosystem, which is one of the planet's most diverse, Ries said. But coral reefs also serve a more practical purpose: They absorb wave energy generated by hurricanes and other severe tropical storms.

"Ironically, the same factor that is likely causing such storms to increase in intensity – global warming – is also causing the corals to bleach (lose their symbiotic algae) and die, ultimately leading to the destruction of the coral reefs, which protect the coasts from these storms," Ries said. "All that being said, it is also important to note that the magnesium-calcium ratio of seawater changes only over millions of years and has no direct relationship to recent global warming and ocean acidification, which are believed to be at least partly human caused."

His team's experiments do, however, have significance with respect to global warming and ocean acidification, Ries said, because they reveal that although corals can adapt mineralogically to altered seawater chemistry, doing so slowed the corals' rate of growth by nearly 65 percent.

"This provides us with further evidence that corals are extremely sensitive to rapid environmental change, such as global warming," he said.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>