Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Must ecologists account for time to understand biodiversity in space?

Ecologists typically study biodiversity in "snapshots"--single-time surveys conducted in many locations--and try to understand why some habitats have more species than others, or why larger areas contain more species than smaller ones. But what are ecologists missing if they ignore the reality that communities are not snapshots but continually in flux?

By studying how plants in three hyper-diverse grasslands change annually over a decade, ecologists Jason Fridley (University of North Carolina, Chapel Hill), Robert Peet (University of North Carolina, Chapel Hill), Eddy van der Maarel (University of Groningen), and Jo Willems (Utrecht University) show how one crucial property of ecosystems--the species-area curve, describing the relation of area and number of species--cannot be fully understood unless annual changes in the species composition of local communities are taken into account.

Reporting in The American Naturalist, Fridley and colleagues demonstrate, for the first time, that "local" species-area curves (those confined to one community) and those of large regions can be linked if one considers that the species composition of small areas changes faster than that of larger areas.

"It is increasingly clear," says Fridley, "that plant communities are dynamic entities in which variation in space and time are inextricably linked."

Indeed, ecologists have argued for decades over why species-area curves measured locally do not seem to match predictions derived from larger areas. This study shows that smaller surveys are heavily constrained by the poor sample size of individuals in any given year. Over time, as individuals die and are replaced by others from the surrounding area, the sample size increases and the community begins to more resemble its region--but in a manner that strictly follows the region's species-area curve.

This novel connection of local and regional biodiversity patterns extends the generality of the species-area relationship to very small areas, and thus allows ecologists to explicitly link processes that drive biodiversity across scales.

Suzanne Wu | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>