Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical forest CO2 emissions tied to nutrient increases

20.06.2006
U. of Colorado study shows phosphorus, nitrogen crank up greenhouse gas emissions in tropics

Extra helpings of key nutrients given to tropical rain forest soils caused them to release substantially more carbon dioxide into the atmosphere, a concern to scientists monitoring global change, says a new University of Colorado at Boulder study.

The study showed when either phosphorus or nitrogen -- both of which occur naturally in the rain forest soils -- were added to forest plots in Costa Rica, they caused soil microbes to increase their CO2 emissions to the atmosphere by about 20 percent annually, said Cory Cleveland of CU's Institute of Arctic and Alpine Research.

The study is important because human activities are changing the amount of phosphorus and nitrogen in ecosystems all over the globe, including the tropics, Cleveland said. Tropical rain forests play a dominant role on Earth in regulating atmospheric CO2, the primary greenhouse gas that has increased by roughly 33 percent since the Industrial Revolution began about 1760.

A paper on the subject by Cleveland and CU-Boulder Associate Professor Alan Townsend of INSTAAR is being published the week of June 19 in the Proceedings of the National Academy of Sciences. The National Science Foundation funded the study.

"One big question is how tropical rain forests are responding to climate change," said Cleveland, an INSTAAR research associate who led the study. "What we have demonstrated is that even small changes in nutrients could have a similarly profound impact on the release of CO2 from tropical forest soils."

Tropical forests contain up to 40 percent of the carbon stored on Earth's continents and account for at least one-third of the annual exchange of CO2 between the biosphere and the atmosphere, said Cleveland. Earth's soils are believed to store several times more carbon than all of the planet's vegetation.

"This is the first time anyone has taken a close look at how changes in key nutrients may alter soil CO2 emissions in tropical forests," said Cleveland. "Processes in the tropics affect what is happening around the globe, so this study has some big implications."

Phosphorus is known as a "limiting nutrient" because its availability can govern the growth rate of many organisms, said Cleveland. While slash-and-burn agriculture in the tropics often reduces soil phosphorus in the long run, the practice can initially make more phosphorus available to tropical soil microbes, increasing their metabolism and the amounts of CO2 they emit, he said.

Phosphorus and many other nutrients are regularly transported around the Earth by global wind patterns, sometimes riding on huge transcontinental dust clouds, said Townsend, who also is associated with CU-Boulder's ecology and evolutionary biology department. "There is strong evidence that humans are increasing the size of these dust clouds as both land-use patterns and climate change, which in turn can change the availability of nutrients to forests," he said.

Nitrogen pollution also is increasing around the world, including in tropical forests, a result of fossil-fuel combustion and crop fertilization activities, said Townsend. "Human activity has changed the availability of nitrogen all over the world, especially in the last 50 years," he said. "This study was surprising because of the large effect both of these nutrients had on the release of CO2 to the atmosphere."

About three-quarters of anthropogenic emissions of CO2 to the atmosphere during the past 20 years are thought to be due to fossil-fuel burning, the researchers said. The rest is predominantly due to land-use changes like deforestation.

The new study, which took place in 2004 and 2005 in Costa Rica's Golfo Dulce Forest Reserve, included a series of 25 meter-square plots that were fertilized with phosphorus, nitrogen, or a combination of the two, said Cleveland. Soil respiration was measured using plastic tubes in the ground running into vented, closed chambers.

According to the National Academy of Sciences, temperatures on Earth have risen by more than 1 degree F in the past century due to build-up of greenhouse gases in the atmosphere, primarily CO2. According to the academy, the warming process has intensified in the past 20 years has been accompanied by retreating glaciers, thinning arctic ice, rising sea levels and longer growing seasons in many regions.

Cory Cleveland | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>