Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral death results from bacteria fed by algae

14.06.2006
Bacteria and algae are combining to kill coral –– and human activities are compounding the problem.

Scientists have discovered an indirect microbial mechanism whereby bacteria kill coral with the help of algae. Human activities are contributing to the growth of algae on coral reefs, setting the stage for the long-term continued decline of coral.


Coral (Acropora) from the Line Islands covered by bubble algae (Dictyosphaeria) Credit: Jennifer Smith

Reporting in the June 5 on-line version of the scientific journal Ecology Letters, scientists described laboratory experiments on coral and algae.

First author Jennifer Smith, a postdoctoral fellow at the National Center for Ecological Analysis and Synthesis (NCEAS) at the University of California, Santa Barbara, explained that the team of scientists, as part of a research expedition to the Line Islands, put algae and coral in chambers of seawater with filters between them. All of the corals with neighboring algae died, while coral without neighboring algae did not die. However, with the addition of an antibiotic, coral death even in the presence of algae was prevented, showing that bacteria fed by the algae are the agents of coral death. "We are the first to link these processes together," said Smith.

"This study tightly links the fields of microbiology with coral reef ecology to help guide reef conservation efforts," said senior author Forest Rohwer, assistant professor of microbiology at San Diego State University.

"Our study shows that bacteria are the front line that kill corals," Smith explained. "Algae release sugar, fueling bacterial growth on the corals. These bacteria suffocate the coral by cutting off the supply of oxygen. Once the corals die, this frees more space for more algae to grow. We think this process sets up a positive feedback loop that accelerates the rate of decline in already damaged reef ecosystems."

The report describes the other conditions that put coral reefs at risk. Overfishing reduces the number of fish that graze on algae, thus increasing the amount of algae on the reef. Nutrients from sewage and agricultural run-off fertilize the algae. Warmer water and more intense hurricanes resulting from global climate change are also blamed for coral death.

"Anyone who has been to the tropics and has had the experience of diving on a coral reef will not deny the spectacular beauty of these systems," said Smith. "They support numerous species of animals and plants and many species that remain undiscovered to science. These ecosystems are particularly important to humans because they support abundant fisheries –– commercial, subsistence, and recreational –– and they generate a large tourism industry."

She added that the reefs themselves protect coastal areas from erosion. From a biological perspective, coral reefs are more productive and support more species than any other marine ecosystem on the planet. While more reefs die every year due to an onslaught of human impacts, many scientists are hopeful that it is not too late to stop the destruction. She mentioned that there is a lot of excitement within the scientific community to begin working towards reef restoration and recovery in areas that have been heavily degraded.

Co-author Enric Sala said, "On certain coral heads I witnessed about half of the coral alive and half dead and covered by fleshy algae. In between the living half and the algae there was a 'band of sickness and death.' I thought, as many others did, that the corals were dying because of a disease, something unknown. But what we found is that the algae are enhancing the coral disease."

Sala is leader of the Line Islands Expedition (http://sio.ucsd.edu/lineislands) and is an associate professor at UC San Diego's Scripps Institution of Oceanography. He is also deputy director of the Center for Marine Biodiversity and Conservation there. Sala explained that for hundreds of thousands of years there have been natural disturbances, such as hurricanes, and coral reefs have always recovered. But now, because of threats such as global warming and pollution, the reefs are losing their ability to recover because humans are adding so many more disturbances to the ocean ecosystem. "In the same way that we take care of our bodies and treat illnesses, we cannot pretend to have healthy coral reefs by addressing individual threats," he said. "The human shadow is longer than we thought and there are invisible, lethal threats that we induce."

Co-author Stuart Sandin, a postdoctoral researcher in Sala's group, said, "This research highlights a little-appreciated, yet critically important interaction between algae and corals, key players on the coral reef. As algae become more abundant on reefs, through the effects of overfishing and pollution, there are indirect effects that accelerate further loss of corals. On the flip side, however, if algae are controlled by abundant fish populations, then the reef gains a capacity for recovery from other forms of disturbance, like hurricanes and sea warming."

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>