Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecosystems with many plant species produce more and survive threats better

02.06.2006


Prairie plants may also be good source of biofuel



Ecosystems containing many different plant species are not only more productive, they are better able to withstand and recover from climate extremes, pests and disease over long periods, according to a new study. It is the first experiment to gather enough data--over a sufficient time and in a controlled environment--to confirm a 50-year scientific debate about whether biodiversity stabilizes ecosystems.

The findings, published in this week’s issue of the journal Nature, are the result of 12 years of experiments conducted by David Tilman, an ecologist at the University of Minnesota, and colleagues Peter Reich of the University of Minnesota and Johannes Knops of the University of Nebraska. The research was conducted at the Cedar Creek Long-Term Ecological Research (LTER) site, one of 26 such National Science Foundation (NSF) sites.


"This study clearly demonstrates that stability of a plant community through time increases as species richness goes up," said Martyn Caldwell, program director in NSF’s Division of Environmental Biology, which funded the research. "Only a long-term field experiment can provide this information."

Biodiversity of global ecosystems has decreased as global population has increased, said Tilman, because diverse ecosystems such as forests and prairies have been cleared to make way for agricultural fields, buildings and roads.

The research shows that ecosystems containing many different plant species are more productive than those containing only one species. A return to biodiversity may prove to be the key, Tilman and his colleagues believe, to meeting energy needs for the growing number of people on the planet and for restoring global ecosystems.

"Diverse prairie grasslands are 240 percent more productive than grasslands with a single prairie species," Tilman said. "That’s a huge advantage. Biomass from diverse prairies can, for example, be used to make biofuels without the need for annual tilling, fertilizers and pesticides, which require energy and pollute the environment. Because they are perennials, you can plant a prairie once and mow it for biomass every fall, essentially forever," Tilman said.

The research was carried out in 168 plots, each of which was randomly planted with one to 16 perennial grasses and other prairie plants. Stability of plants in the plots depended upon diversity and root mass. Roots store nutrients and buffer against climate variations. Perennial prairie plants have far more root mass than crops such as corn, which must be replanted annually.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>