Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does Siberian forest respire

02.06.2006


In vast remote taiga not far from the Yenisei river, where one can get only by helicopter within one third of the year, the construction of a huge 300-meter high mast is to be completed this summer. In the underground shelter under the mast, a research laboratory will be located, which is stuffed with the most contemporary scientific equipment. Researchers needed that in order to thoroughly investigate who or, more precisely, what is responsible for the greenhouse effect, where oxygen, carbonic acid gas and some other gases come from to Earth’s atmosphere, what part of carbonic acid Siberian swamps and forests manage to absorb, and to answer a lot of other questions, part of which seems trivial – but only to dilettantes.



The surprising construction is being erected in the framework of partnership project between the ISTC and the V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences ( Krasnoyarsk). The project is called “Response of Biogeochemical Cycles to Climate Change in Eurasia”. The project will be accomplished by Russian researchers in cooperation with their German colleagues – specialists of the Institute of Biogeochemistry (Jena) and the Institute for Chemistry (Mainz). Both these institutes are members of the largest in Europe Max Planck scientific community and are named after Max Planck.

However, the mast per se is not unique. A twin-mast has been installed in Germany and it allows to carry out similar investigations not in the forestland, like this Siberian one does, but in the region of exceptionally highly developed industry and agriculture. But together they will indeed provide a unique opportunity to compare the atmosphere composition in the regions with fundamentally different antropogenic load and to find out how and due to what the composition changes. As a result, the atmosphere composition can be analyzed, or more precisely – it is possible to determine concentration in it of the most important (from the point of view of this investigation) gases at different heights, right up to 300 meters. It will be possible to study not simply chemical but also isotopic composition. And this will be the very key, which will allow to reveal the contribution by antropogenic and natural components into the general gaseous exchange flow in the atmosphere.


Sergei Verkhovets, project manager, explained in a general way why it was needed to build a tower of such height and how isotopic composition of gases will help to determine their origin.

Measurements of CO2 concentrations at the height of 200 to 300 meters above the earth surface allow us to investigate relatively homogeneous part of atmosphere, the so-called mixed bed. Along with that we can study the processes taking place above a vast territory, avoiding the “noise” caused by daily changes in the photosynthesis process close to the surface.

As per isotope ratio in CO2, CH4, CO and N2O, and the O2/N2 ratio, they allow to distinguish various carbon emission and sink processes - photosynthesis and respiration of ground biosphere, burning of fossil combustible materials, as well as the atmospheric-oceanic gaseous exchange.

For example, plants not only absorb CO2 in the course of photosynthesis, but also educe it while breathing. So, the carbonic acid gas “expired” by plants is enriched by a lighter isotope 12?. And above the ocean, where gaseous exchange processes obey to a greater extent to physical but not to biochemical laws, the difference in isotopic composition substantially aligns. Thus, if two air samples are taken and CO2 is educed out of them, and isotopic composition is determined, it is possible to establish its origin. The isotopic trace (signature) of fossil combustible is also well-known. Carbon monoxide (CO), in its turn, bears information about anthropogenic emissions, because one of its main sources is the incomplete burning of fossil combustible materials. Continuous measurements of carbon and oxygen isotopes on the continents are necessary to discover climatic influence on carbon sink. Methane observations will help us better understand connection between the climate and ecosystem: judging by change of concentration of “common” and “heavy” methane 14CH4, researchers can watch breathing of peatbogs and, probably, of permafrost soils.

The data obtained in the course of observations will be basic data for construction of carbonic balance models both at the regional and continental levels.

This task is particularly urgent for Russia. The point is that due to approval of the Framework Convention and the Kyoto Protocol, the situation occurred when Russia can make its contribution into investigation of global climate changes, but also obtain significant economic benefits. The Protocol stipulates that carbon dioxide removal from the atmosphere by natural absorbent ecosystems is acccounted as fulfilment of discharge reduction indices. Forests of Siberia constitute one fifth of the entire forests of the world, in any case – in terms of square. However, it is necessary to know exactly their capacity as an atmospheric carbon absorber.. It will be possible to obtain such data due to this project.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>