Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does Siberian forest respire

02.06.2006


In vast remote taiga not far from the Yenisei river, where one can get only by helicopter within one third of the year, the construction of a huge 300-meter high mast is to be completed this summer. In the underground shelter under the mast, a research laboratory will be located, which is stuffed with the most contemporary scientific equipment. Researchers needed that in order to thoroughly investigate who or, more precisely, what is responsible for the greenhouse effect, where oxygen, carbonic acid gas and some other gases come from to Earth’s atmosphere, what part of carbonic acid Siberian swamps and forests manage to absorb, and to answer a lot of other questions, part of which seems trivial – but only to dilettantes.



The surprising construction is being erected in the framework of partnership project between the ISTC and the V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences ( Krasnoyarsk). The project is called “Response of Biogeochemical Cycles to Climate Change in Eurasia”. The project will be accomplished by Russian researchers in cooperation with their German colleagues – specialists of the Institute of Biogeochemistry (Jena) and the Institute for Chemistry (Mainz). Both these institutes are members of the largest in Europe Max Planck scientific community and are named after Max Planck.

However, the mast per se is not unique. A twin-mast has been installed in Germany and it allows to carry out similar investigations not in the forestland, like this Siberian one does, but in the region of exceptionally highly developed industry and agriculture. But together they will indeed provide a unique opportunity to compare the atmosphere composition in the regions with fundamentally different antropogenic load and to find out how and due to what the composition changes. As a result, the atmosphere composition can be analyzed, or more precisely – it is possible to determine concentration in it of the most important (from the point of view of this investigation) gases at different heights, right up to 300 meters. It will be possible to study not simply chemical but also isotopic composition. And this will be the very key, which will allow to reveal the contribution by antropogenic and natural components into the general gaseous exchange flow in the atmosphere.


Sergei Verkhovets, project manager, explained in a general way why it was needed to build a tower of such height and how isotopic composition of gases will help to determine their origin.

Measurements of CO2 concentrations at the height of 200 to 300 meters above the earth surface allow us to investigate relatively homogeneous part of atmosphere, the so-called mixed bed. Along with that we can study the processes taking place above a vast territory, avoiding the “noise” caused by daily changes in the photosynthesis process close to the surface.

As per isotope ratio in CO2, CH4, CO and N2O, and the O2/N2 ratio, they allow to distinguish various carbon emission and sink processes - photosynthesis and respiration of ground biosphere, burning of fossil combustible materials, as well as the atmospheric-oceanic gaseous exchange.

For example, plants not only absorb CO2 in the course of photosynthesis, but also educe it while breathing. So, the carbonic acid gas “expired” by plants is enriched by a lighter isotope 12?. And above the ocean, where gaseous exchange processes obey to a greater extent to physical but not to biochemical laws, the difference in isotopic composition substantially aligns. Thus, if two air samples are taken and CO2 is educed out of them, and isotopic composition is determined, it is possible to establish its origin. The isotopic trace (signature) of fossil combustible is also well-known. Carbon monoxide (CO), in its turn, bears information about anthropogenic emissions, because one of its main sources is the incomplete burning of fossil combustible materials. Continuous measurements of carbon and oxygen isotopes on the continents are necessary to discover climatic influence on carbon sink. Methane observations will help us better understand connection between the climate and ecosystem: judging by change of concentration of “common” and “heavy” methane 14CH4, researchers can watch breathing of peatbogs and, probably, of permafrost soils.

The data obtained in the course of observations will be basic data for construction of carbonic balance models both at the regional and continental levels.

This task is particularly urgent for Russia. The point is that due to approval of the Framework Convention and the Kyoto Protocol, the situation occurred when Russia can make its contribution into investigation of global climate changes, but also obtain significant economic benefits. The Protocol stipulates that carbon dioxide removal from the atmosphere by natural absorbent ecosystems is acccounted as fulfilment of discharge reduction indices. Forests of Siberia constitute one fifth of the entire forests of the world, in any case – in terms of square. However, it is necessary to know exactly their capacity as an atmospheric carbon absorber.. It will be possible to obtain such data due to this project.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Ecology, The Environment and Conservation:

nachricht Calculating recharge of groundwater more precisely
28.02.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Light-emitting bubbles captured in the wild

28.02.2017 | Physics and Astronomy

Triboelectric nanogenerators boost mass spectrometry performance

28.02.2017 | Materials Sciences

Calculating recharge of groundwater more precisely

28.02.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>