Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity key to sustainable biofuel according to University of Minn. researcher’s findings

01.06.2006


Ecosystems containing many different plant species are not only more productive, they are also better able to withstand and recover from climate extremes, pests and disease over long periods of time.



These findings, published in the June 1 issue of Nature, are the culmination of 12 years of experiments conducted by David Tilman, Regents Professor of Ecology at the University of Minnesota, to explore the value of biodiversity. The research was carried out at Cedar Creek Natural History Area, near Cambridge, a field station operated by the university’s College of Biological Sciences.

"This is exciting because it shows that biodiversity can be used to produce a sustainable supply of biomass for biofuels," Tilman says.


For more than 50 years, scientists have debated the hypothesis that biodiversity stabilizes ecosystems. The University of Minnesota study is the first to provide enough data -- gathered over a sufficient time period in an experiment that controlled biodiversity – to confirm the theory. The time period of the study allowed researchers to evaluate the average net effects of diversity on resistance to and recovery from drought, pests, disease and other disturbances. Tilman and his collaborators began the work in the early 1990s and began publishing a series of landmark papers in 1994.

Biodiversity of global ecosystems has decreased as global population has increased because diverse ecosystems such as forests and prairies have been cleared to make way for agricultural fields planted with monocultures, buildings and roads.

Tilman’s research has shown that ecosystems containing many different plant species are more productive than those containing only one of those species. A return to biodiversity may prove to be the key to meeting energy needs for the growing number of people on the planet and for restoring global ecosystems.

"Diverse prairie grasslands are 240 percent more productive than grasslands with a single prairie species," Tilman says. "That’s a huge advantage. Biomass from diverse prairies can be used to make biofuels without the need for annual tilling, fertilizers and pesticides, which require energy and pollute the environment. High diversity allows us to produce biofuels with low inputs, and this means that we can get more energy from an acre of land, year after year, with high certainty. Because they are perennials, you can plant prairie grass once and mow it for biomass every fall essentially forever."

The research was carried out in 168 plots, each of which was randomly planted with 1-16 perennial grasses and other prairie plants. Over 12 years, rainfall during the growing season varied more than twofold and average daily high temperatures ranged from 21.5 C to 24.4 C. Stability was dependent on diversity and root mass. Roots store nutrients and buffer against climate variations. Prairie plants, which are perennials, have far more root mass than crops such as corn, which must be replanted annually.

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>