Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Historic Colorado River streamflows reconstructed back to 1490


A new tree-ring-based reconstruction of 508 years of Colorado River streamflow confirms that droughts more severe than the 2000-2004 drought occurred before stream gages were installed on the river.

On July 21, 2004, the reservoir is 60% empty after 5 years of drought. New research shows that prior to 1900, the Colorado River basin may have had as many as eight droughts as severe as the 2000-2004 drought. Credit: Brad Udall.

The new research also confirms that using stream gage records alone may overestimate the average amount of water in the river because the last 100-year period was wetter than the average for the last five centuries.

"This work updates the original landmark Colorado River reconstruction that was done at The University of Arizona’s Laboratory of Tree-Ring Research," said David M. Meko, a UA associate research professor of dendrochronology, the science of tree-ring dating.

"The main points of the 1976 research hold up. Droughts more severe and intense than we’ve seen in the gaged record occurred in the past, and the long-term mean flow is lower than the gaged mean flow."

Connie A. Woodhouse said, "The updated reconstruction for Lee’s Ferry indicates that as many as eight droughts similar in severity, in terms of average flow, to the 5-year 2000-2004 drought have occurred since 1500."

Woodhouse, who led the research team, is a physical scientist at the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center Paleoclimatogy Branch in Boulder, Colo.

Allocations of Colorado River water made in the 1922 Colorado River Compact between the states of Arizona, California, Colorado, Nevada, New Mexico, Wyoming and Utah therefore overestimate the amount of river water available. Los Angeles, Las Vegas, Denver, Phoenix, Tucson and Albuquerque are among the many cities dependent on Colorado River water.

"The long-term perspective provided by tree-ring reconstructions points to a looming conflict between water demand and supply in the upper Colorado River basin," the researchers wrote in their report.

Woodhouse and Meko collaborated with Stephen T. Gray of the U.S. Geological Survey in Tucson, Ariz., and Jeffrey Lukas of the Institute of Arctic and Alpine Research at the University of Colorado in Boulder. The team’s research article, "Updated streamflow reconstructions for the Upper Colorado River Basin," is published in the May 2006 issue of Water Resources Research.

Funding for the study was provided by NOAA, USGS, the U.S. Bureau of Reclamation, the University of Arizona Water Sustainability Program and the University of Colorado Western Water Assessment.

The new research updates the first tree-ring based reconstruction of streamflows at Lee’s Ferry and other Colorado River basin gages, which was published in 1976. The new research improves on the previous work by using an expanded network of tree-ring sites, and because the scientists could incorporate an additional 34 years of tree-ring records to compare to the stream gage record for four gages in the Upper Colorado River basin.

Researchers were able to statistically recreate flows back four centuries prior to the gage record by comparing tree-ring widths from 1906 to 1995 with naturalized gaged streamflows (i.e., streamflows adjusted to remove the impacts of humans) during the same period. The streamflows were reconstructed by using cores taken from approximately 1,200 trees in 60 locations throughout the Colorado River basin area.

Streamflow was reconstructed for Lee’s Ferry, Ariz., a critical measuring location and the dividing point between the Upper Basin and the Lower Basin of the Colorado River as defined by the 1922 Colorado River Compact.

The Lee’s Ferry streamflows are of particular interest to water managers in California, Arizona, Nevada, Utah, New Mexico, Wyoming and Colorado, the seven signatory states to the Compact, because the Colorado River supplies drinking water to approximately 30 million people and irrigates 3.5 million acres of farmland. Historic stream flows for other tributaries to the Colorado River were reconstructed as well.

The underlying message from these new reconstructions remains the same: that Colorado River Compact allocations were based on one of the wettest periods in the past five centuries, and that droughts more severe than any in the last 100 years occurred before stream gages were installed. The most severe sustained drought (based on the lowest 20-year average) in the Upper Colorado River basin occurred in the last part of the 16th century. This reconstruction also shows that average annual flows on the Upper Colorado regularly vary from one decade to the next by more than 1 million acre-feet.

According to Eric Kuhn, general manager of the Colorado River Water Conservation District and an expert on Colorado River issues, "Water managers have always made critical water decisions based on a relatively short and often incomplete gaged record for the Colorado River. This study should be of keen interest because it shows that there were likely a number of long-term droughts more severe than what we experienced in the 1900s and during this century. The study should have enormous implications on how the river is managed."

The new reconstructions do indicate the river may have a higher long-term average flow, 14.6 million acre-feet, than did the 1976 reconstruction, which estimated a long-term average flow of 13.5 million acre-feet. However, the new average for the past 500 years is still lower than the average of 15.2 million acre-feet recorded by stream gages from 1906 to 1995. An acre-foot is approximately 325,000 gallons and is enough water to meet the needs of two four-person families for a year.

The scientists’ next step is understanding the source of the differences in the means between the new reconstruction and the 1976 work.

Mari N. Jensen | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>