Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Overfishing puts Southern California kelp forest ecosystems at risk, report scientists


Kelp forest ecosystems that span the West Coast –– from Alaska to Mexico’s Baja Peninsula –– are at greater risk from overfishing than from the effects of run-off from fertilizers or sewage on the shore, say scientists at the University of California, Santa Barbara. The findings have important implications for the design of California’s Marine Protected Areas.

A California kelp forest creates a cathedral effect as the sun shines through the blades of the kelp. Credit: NOAA

In an article published in the May 26 issue of Science, scientists describe the first study to compare the top-down versus bottom-up human influences on the food chain of the kelp forest ecosystems.

The study was conducted by scientists at UCSB’s National Center for Ecological Analysis and Synthesis, known as NCEAS, which is funded by the National Science Foundation.

"This study shows that California is on the right track by limiting fishing in certain areas in an effort to comply with the Marine Life Protection Act," said first author Ben Halpern, project director at NCEAS.

Kelp are giant algae that reach up to 120 feet in height and support diverse ecosytems. They provide beautiful settings for scuba diving and are rich areas for commercial and recreational fishing.

The research team took data from four years of marine life surveys by the National Park Service. The park service regularly checks 16 different kelp forest sites around the Channel Islands off the coast of Central California. They maintain data on 46 different species.

Next, the scientists matched the park service data to data provided by SeaWiFs, a satellite monitoring project that photographs and analyzes ocean color for information about ocean life. This information can then be used to estimate nutrient levels in the ocean.

Organic coastal run-off –– from fertilizers and sewage overflow –– increases the amount of organic material in the near shore ocean. According to the study, differences in the amount of organic material do not have much effect on the delicate food chain of the kelp forest ecosystem. However removal of the fish at the top of the food chain has a profound effect.

When the predator species, such as rockfish, at the top of the food chain are removed, then the species that they normally eat, such as snails and barnacles, begin to increase in number. Many of these are herbivores that eat kelp. When their numbers increase, they decrease the amount of kelp, in turn changing how kelp forests look and the type of species that are associated with the kelp forest.

"Kelp forests are so sensitive," said Halpern. "If you remove some of the predators, then you can have an effect on the entire kelp forest ecosystem."

He explained that until now studies of kelp forests looked at either overfishing or increased nutrients. This is the first study to put both variables together to see which is more important.

Gail Gallessich | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>