Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sweet success for pioneering hydrogen energy project


Bacteria that can munch through confectionery could be a valuable source of non-polluting energy in the years ahead, new research has shown.

In a feasibility study funded by the Engineering and Physical Sciences Research Council, bioscientists at the University of Birmingham have demonstrated that these bacteria give off hydrogen gas as they consume high-sugar waste produced by the confectionery industry.

The hydrogen has been used to generate clean electricity via a fuel cell (1). Looking to the future, it could also be used to power the hydrogen-fuelled road vehicles of tomorrow. There is increasing recognition that, over the coming decades, hydrogen could provide a mainstream source of energy that is a safe, environmentally friendly alternative to fossil fuels.

This was a highly successful laboratory demonstration of bacterial hydrogen production using confectionery waste as a feedstock. The waste was supplied by Birmingham-based international confectionery and beverage company Cadbury Schweppes plc, a partner in the initiative. An economic assessment undertaken by another partner, C-Tech Innovation Ltd, showed that it should be practical to repeat the process on a larger scale.

As well as energy and environmental benefits, the technique could provide the confectionery industry (and potentially other foodstuff manufacturers) with a useful outlet for waste generated by their manufacturing processes. Much of this waste is currently disposed of in landfill sites.

In this project, diluted nougat and caramel waste was introduced into a 5 litre demonstration reactor (although other similar wastes could be used). The bacteria, which the researchers had identified as potentially having the right sugar-consuming, hydrogen-generating properties, were then added.

The bacteria consumed the sugar, producing hydrogen and organic acids; a second type of bacteria was introduced into a second reactor to convert the organic acids into more hydrogen. The hydrogen produced was fed to a fuel cell, in which it was allowed to react with oxygen in the air to generate electricity. Carbon dioxide produced in the first reactor was captured and disposed of safely, preventing its release into the atmosphere.

Waste biomass left behind by the process was removed, coated with palladium (2) and used as a catalyst in another project, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), aimed at identifying ways of removing pollutants such as chromium (VI) and polychlorinated biphenyls (PCBs) from the environment. The reactors used by this parallel initiative also required hydrogen and this was supplied by the confectionery waste initiative too, further underlining the ‘green’ benefits offered by the new hydrogen production technique.

Professor Lynne Macaskie of the University of Birmingham’s School of Biosciences led the research team. “Hydrogen offers huge potential as a carbon-free energy carrier,” she comments. “Although only at its initial stages, we’ve demonstrated a hydrogen-producing, waste-reducing technology that, for example, might be scaled-up in 5-10 years’ time for industrial electricity generation and waste treatment processes.”

The team is now engaged in follow-up work which will produce a clearer picture of the overall potential for turning a wider range of high-sugar wastes into clean energy using the same basic technique.

See the new technology in action at This video clip shows gas from the reactor being fed to a fuel cell, producing electricity that enables the electric fan to turn.

Natasha Richardson | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>