Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking Climate Change Across Time Scales

22.05.2006


What do month-to-month changes in temperature have to do with century-to-century changes in temperature? At first it might seem like not much. But in a report published in this week’s Nature, scientists from the Woods Hole Oceanographic Institution (WHOI) have found some unifying themes in the global variations of temperature at time scales ranging from a single season to hundreds of thousands of years. These findings help place climate observed at individual places and times into a larger global and temporal context.



“Much of the work went into assembling the different types of records needed to study such diverse time scales”, said Peter Huybers, a paleoclimatologist in the Geology and Geophysics Department at WHOI and lead author on the study. “Data from instruments from around the world are available for recent periods, but it is not so easy for earlier times. We have few instrumental records before the 19th century, so we have to use measurements in corals, ice cores, and sediment cores to estimate past temperatures”.

These measurements and data compilations were made by scientists at WHOI and other research institutions. “While none of the measurements we use are new,” Huybers said, “putting them together told us more than we could learn from any single record.”


Huybers and coauthor William Curry, a senior scientist and paleoceanographer at WHOI, found that temperature variations are more intimately linked across time scales than had previously been thought. For example, places that have a large annual cycle in temperature, like the high latitudes, also have a lot of interannual and decadal temperature variability. In fact, the relationship is so strong Huybers says you can fairly well predict how much decadal temperature change occurs at a given location simply by knowing the size of the annual cycle.

At longer time scales, however, a different relationship seems to hold. Temperature variations at thousands and tens of thousands of years seem to follow temperature variations at the Milankovitch cycles. Milankovitch cycles are named after the Serbian mathematician Milutin Milankovitch, who argued that periodic changes in the Earth’s orbit around the Sun cause the advance and retreat of massive ice sheets. The changes in Earth’s orbit cause redistributions in how much sunlight the Earth receives at different locations and seasons.

“The overall impression is that energy is put into the climate system at the annual and Milankovitch time scales, causing temperature variations at those time scales, but also at the neighboring time scales” said Huybers. In the tropics the amplitude of the annual and Milankovitch cycles tends to be smaller than at high latitudes and, correspondingly, there is less tropical temperature change across interannual to thousand-year time scales. Another notable feature is that the variability of temperature appears most similar globally at those time scales furthest removed from the annual and Milankovitch time periods, indicating that away from these forcing periods climate relaxes to a more uniform background state.

Climate varies at all time scales, from months to millions of years and longer. These changes are often studied independently of one another, but now there is a clearer idea of how climate change is linked across time scales. “These insights may help us to better understand past temperature changes, improve our models of the climate, and maybe even predict future climate change,” Huybers said.

Funding was provided by the NOAA Postdoctoral Program in Climate and Global Change and the National Science Foundation.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>