Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Linking Climate Change Across Time Scales


What do month-to-month changes in temperature have to do with century-to-century changes in temperature? At first it might seem like not much. But in a report published in this week’s Nature, scientists from the Woods Hole Oceanographic Institution (WHOI) have found some unifying themes in the global variations of temperature at time scales ranging from a single season to hundreds of thousands of years. These findings help place climate observed at individual places and times into a larger global and temporal context.

“Much of the work went into assembling the different types of records needed to study such diverse time scales”, said Peter Huybers, a paleoclimatologist in the Geology and Geophysics Department at WHOI and lead author on the study. “Data from instruments from around the world are available for recent periods, but it is not so easy for earlier times. We have few instrumental records before the 19th century, so we have to use measurements in corals, ice cores, and sediment cores to estimate past temperatures”.

These measurements and data compilations were made by scientists at WHOI and other research institutions. “While none of the measurements we use are new,” Huybers said, “putting them together told us more than we could learn from any single record.”

Huybers and coauthor William Curry, a senior scientist and paleoceanographer at WHOI, found that temperature variations are more intimately linked across time scales than had previously been thought. For example, places that have a large annual cycle in temperature, like the high latitudes, also have a lot of interannual and decadal temperature variability. In fact, the relationship is so strong Huybers says you can fairly well predict how much decadal temperature change occurs at a given location simply by knowing the size of the annual cycle.

At longer time scales, however, a different relationship seems to hold. Temperature variations at thousands and tens of thousands of years seem to follow temperature variations at the Milankovitch cycles. Milankovitch cycles are named after the Serbian mathematician Milutin Milankovitch, who argued that periodic changes in the Earth’s orbit around the Sun cause the advance and retreat of massive ice sheets. The changes in Earth’s orbit cause redistributions in how much sunlight the Earth receives at different locations and seasons.

“The overall impression is that energy is put into the climate system at the annual and Milankovitch time scales, causing temperature variations at those time scales, but also at the neighboring time scales” said Huybers. In the tropics the amplitude of the annual and Milankovitch cycles tends to be smaller than at high latitudes and, correspondingly, there is less tropical temperature change across interannual to thousand-year time scales. Another notable feature is that the variability of temperature appears most similar globally at those time scales furthest removed from the annual and Milankovitch time periods, indicating that away from these forcing periods climate relaxes to a more uniform background state.

Climate varies at all time scales, from months to millions of years and longer. These changes are often studied independently of one another, but now there is a clearer idea of how climate change is linked across time scales. “These insights may help us to better understand past temperature changes, improve our models of the climate, and maybe even predict future climate change,” Huybers said.

Funding was provided by the NOAA Postdoctoral Program in Climate and Global Change and the National Science Foundation.

Shelley Dawicki | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>