Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking Climate Change Across Time Scales

22.05.2006


What do month-to-month changes in temperature have to do with century-to-century changes in temperature? At first it might seem like not much. But in a report published in this week’s Nature, scientists from the Woods Hole Oceanographic Institution (WHOI) have found some unifying themes in the global variations of temperature at time scales ranging from a single season to hundreds of thousands of years. These findings help place climate observed at individual places and times into a larger global and temporal context.



“Much of the work went into assembling the different types of records needed to study such diverse time scales”, said Peter Huybers, a paleoclimatologist in the Geology and Geophysics Department at WHOI and lead author on the study. “Data from instruments from around the world are available for recent periods, but it is not so easy for earlier times. We have few instrumental records before the 19th century, so we have to use measurements in corals, ice cores, and sediment cores to estimate past temperatures”.

These measurements and data compilations were made by scientists at WHOI and other research institutions. “While none of the measurements we use are new,” Huybers said, “putting them together told us more than we could learn from any single record.”


Huybers and coauthor William Curry, a senior scientist and paleoceanographer at WHOI, found that temperature variations are more intimately linked across time scales than had previously been thought. For example, places that have a large annual cycle in temperature, like the high latitudes, also have a lot of interannual and decadal temperature variability. In fact, the relationship is so strong Huybers says you can fairly well predict how much decadal temperature change occurs at a given location simply by knowing the size of the annual cycle.

At longer time scales, however, a different relationship seems to hold. Temperature variations at thousands and tens of thousands of years seem to follow temperature variations at the Milankovitch cycles. Milankovitch cycles are named after the Serbian mathematician Milutin Milankovitch, who argued that periodic changes in the Earth’s orbit around the Sun cause the advance and retreat of massive ice sheets. The changes in Earth’s orbit cause redistributions in how much sunlight the Earth receives at different locations and seasons.

“The overall impression is that energy is put into the climate system at the annual and Milankovitch time scales, causing temperature variations at those time scales, but also at the neighboring time scales” said Huybers. In the tropics the amplitude of the annual and Milankovitch cycles tends to be smaller than at high latitudes and, correspondingly, there is less tropical temperature change across interannual to thousand-year time scales. Another notable feature is that the variability of temperature appears most similar globally at those time scales furthest removed from the annual and Milankovitch time periods, indicating that away from these forcing periods climate relaxes to a more uniform background state.

Climate varies at all time scales, from months to millions of years and longer. These changes are often studied independently of one another, but now there is a clearer idea of how climate change is linked across time scales. “These insights may help us to better understand past temperature changes, improve our models of the climate, and maybe even predict future climate change,” Huybers said.

Funding was provided by the NOAA Postdoctoral Program in Climate and Global Change and the National Science Foundation.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>