Impact of biosciences and environmental research seen in environmental protection, health recommendations and legislation

Academy-funded biosciences and environmental research projects have many different kinds of scientific and social impacts. Basic research in these fields promotes not only the advancement of science, but also many social objectives. This is clear from a report published by the Academy of Finland on 17 May on the impact of biosciences and environmental research. The report is one of the Academy’s SIGHT2006 publications on the state, level and impact of Finnish scientific research published this year.

The report “The impact of research in biosciences and environmental research” focuses on examining the scientific and social impact of the research through case descriptions. It also looks into researchers’ views on the impact of their own research and on possible obstacles to achieving impact.

The report shows that monitoring impact of research is a long-term commitment. It usually takes a long time before new research knowledge can be seen in legislation or in society. As a whole, the scientific knowledge gained from individual studies, though seeming somewhat fragmented, does in the long term become visible in society and in the actions of individual citizens. This becomes particularly clear when assessing the impact of environmental research results.

Impact of basic research in all shapes and sizes

The report indicates that the impact of basic research varies over time, showing a multiform quality. In terms of generating impact, the process is promoted and accelerated by a clear social need for research results. Impact is evident in environmental research projects in the form of environmental protection, for instance. The environmental case studies also show that the realisation of the impact of research is closely linked to various administrative and political processes as well as economic interests.

Typically, social impact of environmental research is reflected in politics and administration. This is because environmental issues have during the last decade come high up on the agenda in national and international politics, creating a real demand for research knowledge in the field. The Kyoto Protocol and various measures to improve the state of the Baltic Sea have also depended on this knowledge.

On the other hand, it seems we do not know how to fully tap into environmental research knowledge. In future, even the economic importance of environmental knowledge will increase, for example as a result of emission trade administration. An example is a project headed by Academy Research Fellow Jari Liski studying carbon cycles through different methods. The project has had important bearing on climate and forest policy planning. Liski’s team developed a model for carbon cycling in forest soils, which is simple enough to be applied to different kinds of forests and attached to different calculation systems.

Environmental knowledge is also hugely important in the development of human well-being, especially when assessing various environmental risks from the viewpoint of health and well-being. Professor Matti Jantunen’s project that examined the exposure of the working population in the Helsinki region to air pollution provides a good example. The project was part of the international EXPOLIS study that collected a multinational database of air pollution exposure across Europe. Project funding from the Academy of Finland made it possible to analyse and publish database samples and results.

The main objective of the EXPOLIS study was to create a database with easily accessible data to be analysed in decision-making. Collected data helps in determining the causes of exposure problems, as well as its sources, microenvironments and activities. This leads on to further examining the reasons for exposure. Today, the results of the EXPOLIS study influence decision-making and drafting of decisions all over Europe. Even WHO has used the results in its reporting. The National Public Health Institute in Finland has used the material in a study on chemical risks in the environment and in the recommendations that followed.

Impact calls upon development of the research system

The Academy of Finland’s Research Council for Biosciences and Environment considers it important that a broad development effort is undertaken for purposes of promoting the impact of research. “The problems of impact cannot be resolved simply by working to develop research. It is also crucially important to promote the demand for genuine knowledge,” the Research Council states. “The development of the European Research Area, Community patenting and knowledge-intensive common markets are also key to achieving greater impact.”

“The impact of research in biosciences and environmental research” studies the impacts of Academy funding in food sciences and environmental research funded by the Research Council for Biosciences and Environment, impact of Academy research programmes in general as well as the impact of international programme cooperation.

The report has been published in Finnish in the Academy of Finland’s publication series and may be ordered by e-mail, viestinta@aka.fi. The report is available in PDF format on the Academy’s web pages under Publications (Publication series).

Media Contact

Riitta Tirronen alfa

More Information:

http://www.aka.fi/eng

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors