Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exxon Valdez oil found in tidal feeding grounds of ducks, sea otters

18.05.2006


Seventeen years after the Exxon Valdez ran aground in Alaska’s Prince William Sound, compelling new evidence suggests that remnants of the worst oil spill in U.S. history extend farther into tidal waters than previously thought, increasing the probability that the oil is causing unanticipated long-term harm to wildlife. The finding appears today on the Web site of the American Chemical Society’s journal, Environmental Science & Technology.



The study, by research chemist Jeffrey Short and colleagues at the National Marine Fisheries Service in Juneau, Alaska, is also scheduled to appear in the June 15 print issue of the journal.

"This study shows that it is very plausible that exposure to Exxon Valdez oil is having a material impact on many shore-dwelling animals and is contributing to their slow recovery in some parts of Prince William Sound," Short says. "Sea otters, for instance, have yet to re-inhabit Herring Bay, the most oiled bay we studied, and the population of otters elsewhere around northern Knight Island continues to decline. Unfortunately, because much of this oil is buried in beach sediments and not exposed to weathering and other elements that might degrade it, it could remain hazardous to wildlife for decades."


The Exxon Valdez stuck an underwater rock formation on March 24, 1989, spilling 11 million gallons of heavy crude oil into the Sound over the next several days. Despite massive clean-up efforts, Short estimates about six miles of shoreline is still affected by the spill and as much as 100 tons of oil lingers in the Sound.

In their study, Short and his colleagues found significant amounts of Exxon Valdez oil buried in sand and silt that only becomes dry during the lowest tides. This biologically diverse zone is a prime feeding ground for sea otters, ducks and other wildlife.

Previously, scientists believed most of the oil was deposited on beaches at higher tide levels.>

The researchers randomly dug 662 pits along 32 stretches of shoreline on northern Knight Island, one of the earliest and worst affected areas during the spill. They found Exxon Valdez oil at 14 of the 32 sites. Although oil was spread throughout the tidal range, about half of it was found in the low tide zone, where predators could encounter it while searching for prey. More than 90 percent of the surface oil and all of the subsurface oil was from the Exxon Valdez, Short says.

Based on these findings, the researchers estimated that in a given year, a sea otter — digging three pits a day searching for clams and other prey — would probably come into contact with Exxon Valdez oil at least once every two months. However, sea otters dig thousands of pits a year, and Short suspects they actually could be encountering oil far more often than estimated.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>