Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Widest study yet of depletion rate of wild flowers in Western Europe

15.05.2006


BIODIVERSITY of our planet is being increasingly degraded by human activity – but to what extent and at what speed?



Scientists at Manchester Metropolitan University and the Open University are taking part in the widest study yet of the impacts of nitrogen emissions from transport, industry and agriculture on plant species loss in Western Europe.

Over the next three years, research teams will set out to determine the time factor of species loss and its relationship to environmental factors man-made and otherwise.


Nancy Dise, Professor of Environmental Science at Manchester Metropolitan, contributed to a recent study of 68 sites in the UK, which showed that over the last 40-50 years the diversity of meadows has been reduced by about 25% in areas receiving only average levels of nitrogen in rain and snow*.

Taking this research forward, Professor Dise and a team of leading ecologists, bio-geochemists and atmospheric chemists aim to find out how serious the problem is in a much larger European study involving seven countries and hundreds of test sites.

Nitrogen is a fertiliser and the more there is in the atmosphere the faster the weedy plants grow, often at the expense of slower-growing flowering plants such as heather, eyebright, ribwort, harebell and orchids, some of which are rare and becoming rarer.

Professor Dise said: “These plants are certainly not as widespread as they should be, and this reverberates in the natural community, impacting on insects that rely on those plants and, in turn on birds.

“As biodiversity is lost, we are chipping away at the life-support system of the planet. We do not know how much of this damage ecosystems can tolerate before they begin to lose functions like clean water, removal of contaminants and storage of carbon and other greenhouse gases.”

Researchers will look at numbers of species and soil chemistry at 50 sites in France, Holland and Germany, plus others in Belgium, Spain and Ireland. Sites of different ‘vulnerability’ including Sites of Special Scientific Interest (SSSIs) will be catalogued to compare effects in contrasting grassland systems.

Results should, they say, help with future predictions of plant biodiversity and crucially provide a steer on the rate of depletion of species.

Chemical, human and physical influences will be considered in relation to the changing diversity of each site.

Added Professor Dise: “We will be going to some of the wildest and most beautiful parts of Europe, because unfortunately, this is happening in places that people really care about.”

“Pollution is not just an urban problem but is being felt places you might least expect, places that don’t look polluted and where the effects are slow but insidious.”

The €7.5million project is being funded through the European Science Foundation and is the EU body’s largest research project this year in the field of biodiversity.

It is being run under the name BEGIN (Biodiversity of European Grasslands – the Impact of Atmospheric Nitrogen Deposition) and led by Dr David Gowling at the Open University. Partners are the University of Bordeaux, the University of Utrecht and the University of Bremen.

MMU acts as the central quality control laboratory and will coordinate all chemical soil tests.

*Areas that receive higher amounts of nitrogen, such as those downwind from intensively-farmed countryside, showed even higher losses of biodiversity.

Gareth Hollyman | alfa
Further information:
http://www.mmu.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>