Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Widest study yet of depletion rate of wild flowers in Western Europe

15.05.2006


BIODIVERSITY of our planet is being increasingly degraded by human activity – but to what extent and at what speed?



Scientists at Manchester Metropolitan University and the Open University are taking part in the widest study yet of the impacts of nitrogen emissions from transport, industry and agriculture on plant species loss in Western Europe.

Over the next three years, research teams will set out to determine the time factor of species loss and its relationship to environmental factors man-made and otherwise.


Nancy Dise, Professor of Environmental Science at Manchester Metropolitan, contributed to a recent study of 68 sites in the UK, which showed that over the last 40-50 years the diversity of meadows has been reduced by about 25% in areas receiving only average levels of nitrogen in rain and snow*.

Taking this research forward, Professor Dise and a team of leading ecologists, bio-geochemists and atmospheric chemists aim to find out how serious the problem is in a much larger European study involving seven countries and hundreds of test sites.

Nitrogen is a fertiliser and the more there is in the atmosphere the faster the weedy plants grow, often at the expense of slower-growing flowering plants such as heather, eyebright, ribwort, harebell and orchids, some of which are rare and becoming rarer.

Professor Dise said: “These plants are certainly not as widespread as they should be, and this reverberates in the natural community, impacting on insects that rely on those plants and, in turn on birds.

“As biodiversity is lost, we are chipping away at the life-support system of the planet. We do not know how much of this damage ecosystems can tolerate before they begin to lose functions like clean water, removal of contaminants and storage of carbon and other greenhouse gases.”

Researchers will look at numbers of species and soil chemistry at 50 sites in France, Holland and Germany, plus others in Belgium, Spain and Ireland. Sites of different ‘vulnerability’ including Sites of Special Scientific Interest (SSSIs) will be catalogued to compare effects in contrasting grassland systems.

Results should, they say, help with future predictions of plant biodiversity and crucially provide a steer on the rate of depletion of species.

Chemical, human and physical influences will be considered in relation to the changing diversity of each site.

Added Professor Dise: “We will be going to some of the wildest and most beautiful parts of Europe, because unfortunately, this is happening in places that people really care about.”

“Pollution is not just an urban problem but is being felt places you might least expect, places that don’t look polluted and where the effects are slow but insidious.”

The €7.5million project is being funded through the European Science Foundation and is the EU body’s largest research project this year in the field of biodiversity.

It is being run under the name BEGIN (Biodiversity of European Grasslands – the Impact of Atmospheric Nitrogen Deposition) and led by Dr David Gowling at the Open University. Partners are the University of Bordeaux, the University of Utrecht and the University of Bremen.

MMU acts as the central quality control laboratory and will coordinate all chemical soil tests.

*Areas that receive higher amounts of nitrogen, such as those downwind from intensively-farmed countryside, showed even higher losses of biodiversity.

Gareth Hollyman | alfa
Further information:
http://www.mmu.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>