Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Bay Is His Oyster: Ray Grizzle Is Restoring Oyster Reefs To NH’s Great Bay


In the past decade, the oyster population in New Hampshire’s Great Bay estuary has plummeted by 90 percent, due to the 1995 arrival of the oyster disease MSX. The previous century saw a slower but equally devastating demise of oysters from exuberant overharvesting. “We have seen local extinction on some reefs,” says Ray Grizzle, research associate professor at the University of New Hampshire’s Jackson Estuarine Laboratory.

Now Grizzle is working to bring oysters back to Great Bay – lots of them. He’s helping the state of New Hampshire meet its established goal of restoring 20 acres of oyster reefs by 2010. “I hope we’re going to have a bay with a healthy oyster population, and we’re going to work hard to do it,” he says. His research explores which are the best reef restoration techniques for the Great Bay estuarine system (

Oyster reef restoration involves providing sufficient hard substrate – typically oyster shells on which young oysters settle and grow – and seeding it with disease-resistant young oysters. Natural oyster reefs are formed by live oysters atop mounds of empty shells; one initiative of Grizzle’s lab is soliciting “recycled” empty shells from oyster harvesters that will eventually be returned to the bay to provide substrate.

Grizzle likens his role in oyster reef restoration to an “ecological physician.” Just as an orthopedist can set a broken bone but the body must do the healing, he can set up conditions that are right for oyster reefs to prosper, but factors beyond his control – water quality, larval abundances, and other conditions he’s exploring – play a major role in his success.

At five different restoration sites around the Great Bay estuarine system, Grizzle and his team are experimenting with optimal conditions for reef restoration. One major research question is whether several small or one large reef promote abundance, survival and growth of the larval oysters (called “spat” when they are settled on the reefs). “It’s like sodding your lawn versus sprigging it,” says Grizzle, adding that the smaller reefs seem to show the best results.

Oyster harvesting in the Great Bay estuary system ( – the only oyster habitat in New Hampshire – is almost exclusively a recreational pursuit, so restoring oyster reefs would have a relatively small impact at the raw bar. However, there are typically several hundred licenses for recreational harvesting issued each year by the New Hampshire Fish and Game Department. Also, the effect on water quality could be significant: Each oyster, says Grizzle, pumps 20 or so gallons of water each day through them, retaining particles as small as a virus. “They’re marvelous filters,” he says.

Further, he notes that oyster reefs, much like seagrass beds or coral reefs, support a variety of marine life. “Oyster reefs provide all these nooks and crannies for other organisms,” he says, including sport fishes. “If we improve the habitat for oysters we can improve the environment.”

Funding sources for Grizzle’s oyster reef restoration work include the National Oceanic and Atmospheric Administration, the New Hampshire Estuaries Project, The Nature Conservancy, the City of Dover (N.H.), N.H. Sea Grant, and the Natural Resources Conservation Service.

Beth Potier | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>