Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Bay Is His Oyster: Ray Grizzle Is Restoring Oyster Reefs To NH’s Great Bay

12.05.2006



In the past decade, the oyster population in New Hampshire’s Great Bay estuary has plummeted by 90 percent, due to the 1995 arrival of the oyster disease MSX. The previous century saw a slower but equally devastating demise of oysters from exuberant overharvesting. “We have seen local extinction on some reefs,” says Ray Grizzle, research associate professor at the University of New Hampshire’s Jackson Estuarine Laboratory.

Now Grizzle is working to bring oysters back to Great Bay – lots of them. He’s helping the state of New Hampshire meet its established goal of restoring 20 acres of oyster reefs by 2010. “I hope we’re going to have a bay with a healthy oyster population, and we’re going to work hard to do it,” he says. His research explores which are the best reef restoration techniques for the Great Bay estuarine system (www.oysters.unh.edu).

Oyster reef restoration involves providing sufficient hard substrate – typically oyster shells on which young oysters settle and grow – and seeding it with disease-resistant young oysters. Natural oyster reefs are formed by live oysters atop mounds of empty shells; one initiative of Grizzle’s lab is soliciting “recycled” empty shells from oyster harvesters that will eventually be returned to the bay to provide substrate.



Grizzle likens his role in oyster reef restoration to an “ecological physician.” Just as an orthopedist can set a broken bone but the body must do the healing, he can set up conditions that are right for oyster reefs to prosper, but factors beyond his control – water quality, larval abundances, and other conditions he’s exploring – play a major role in his success.

At five different restoration sites around the Great Bay estuarine system, Grizzle and his team are experimenting with optimal conditions for reef restoration. One major research question is whether several small or one large reef promote abundance, survival and growth of the larval oysters (called “spat” when they are settled on the reefs). “It’s like sodding your lawn versus sprigging it,” says Grizzle, adding that the smaller reefs seem to show the best results.

Oyster harvesting in the Great Bay estuary system (http://www.oysters.unh.edu/Graphics/great-bay-map.gif) – the only oyster habitat in New Hampshire – is almost exclusively a recreational pursuit, so restoring oyster reefs would have a relatively small impact at the raw bar. However, there are typically several hundred licenses for recreational harvesting issued each year by the New Hampshire Fish and Game Department. Also, the effect on water quality could be significant: Each oyster, says Grizzle, pumps 20 or so gallons of water each day through them, retaining particles as small as a virus. “They’re marvelous filters,” he says.

Further, he notes that oyster reefs, much like seagrass beds or coral reefs, support a variety of marine life. “Oyster reefs provide all these nooks and crannies for other organisms,” he says, including sport fishes. “If we improve the habitat for oysters we can improve the environment.”

Funding sources for Grizzle’s oyster reef restoration work include the National Oceanic and Atmospheric Administration, the New Hampshire Estuaries Project, The Nature Conservancy, the City of Dover (N.H.), N.H. Sea Grant, and the Natural Resources Conservation Service.

Beth Potier | EurekAlert!
Further information:
http://www.oysters.unh.edu
http://www.oysters.unh.edu/Graphics/great-bay-map.gif
http://www.unh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>