Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-Staters design and build a low-cost remote sensing tool for environmental studies

11.05.2006


A Kansas State University research team is prototyping a small, inexpensive remote-control plane as a sensing tool, also known as an unmanned aerial vehicle, to collect environmental data. The team plans to test it over the Konza Prairie Biological Station near Manhattan this summer.



If the sensing tool performs as the team hopes, it will be made available to climate scientists, who would then be able to reconstruct it to obtain high-resolution images and reliable data.

The development of the sensing tool is part of a three-year research instrumentation project that began in fall 2005 with a $597,000 National Science Foundation grant.


The researchers are Dale Schinstock, assistant professor of mechanical engineering; Jay Ham, a professor of agronomy and an environmental biophysicist; and Doug Goodin, professor of geography and a remote sensing expert. Schinstock is in charge of developing the airframe and the remote control systems for the sensing tool, while Ham and Goodin will put it to work once it’s flight worthy.

According to the researchers, the sensing tool/unmanned aerial vehicle should be capable of "flying low and slow" just a few feet above the ground. The onboard payload of digital cameras, spectral radiometers and other remote sensing instruments will produce high-resolution images and data about small groups of plants and their environmental stress level.

At just 15 pounds with payload, the bantamweight hobby airframe with an 80-inch wingspan has been modified to house the remote sensing instruments in a carbon fiber-reinforced fuselage. A K-State graduate student designed and built an autopilot for first phases of the project. However, the researchers have opted for incorporating a commercially available autopilot so the sensing tool can be reproduced easily by others.

"This will be very easy to use. Its weight and size allow it to be launched by hand and flopped down in the grass for landings," Schinstock said.

"Furthermore, we’re relying on an electric propulsion system that makes it extremely reliable and easy to use," he said. "Battery power eliminates emissions and messy fuels that could compromise the data collection systems and greatly reduces vibration."

According to Schinstock, the remote sensing tool will meet a need shared by thousands of environmental scientists worldwide. For just a few thousand dollars, researchers will have a way to collect data for small ecosystem sites at low altitudes and at very slow speeds. Until now, climate research has required costly, piloted airplanes and satellites for earth’s images and data, he said.

"Small remote-control planes can be put to work in a variety of environmental settings," Ham said. "We want them to be comparatively cheap to build and operate. They’ll provide a data-collection tool that offers tremendous flexibility to users. We’re really developing a new tool for researchers that will allow them to go out and comprehensively map the vegetation in a field-sized area, for example, one square section."

Schinstock said the concept of using the sensing tool for nonmilitary applications opens up many possibilities for collecting reliable data in tricky or dangerous settings, such as studying dispersal of a smoke plume during a prairie fire; checking smokestack emissions; counting livestock in the pens at a feedlot; or checking crop fields for problem areas, for example.

"We keep thinking of new civilian uses for it," Ham said. He also said it will help his own research, which focuses on measuring the movement of gases between the prairie and the atmosphere.

Ham collects data via a mini-network of six meteorological towers on the Konza Prairie and the Rannells Flint Hills Prairie Preserve. The Konza towers are a component of the regional network, Ameriflux. Counterpart networks in Europe, Asia and Oceania also collect ecological data, which then flows to FLUXNET central locations, including Oak Ridge National Laboratory, for computer modeling the climate.

"Our role is to study the tallgrass prairie ecosystem and how land management impacts that ecosystem. In Kansas, we’re interested in how management decisions like grazing and burning, coupled with year-to-year weather variations, impact the movement of carbon dioxide between the surface and the atmosphere," Ham said.

"Through these networks we’re trying to get a good understanding of all the major ecosystems in the world: grasslands versus Amazon forests versus African savannah versus tundra in Alaska," Ham said.

"The earth’s atmosphere links all cultures and nations. By that, I mean that carbon dioxide emitted in China, for example, can impact the vegetation in North America or Europe and vice versa. Any decisions about climate change have to be based on a complete global analysis," he said.

"Having this remote sensing tool will support a lot of environmental research that’s already going on in Kansas and also elsewhere," Ham said. "Because it can fly as low as 15 feet and as slow as 30 miles per hour if necessary, we’re going to be able to see details that we cannot measure with a regular piloted aircraft.

"I think it will be possible not only to be able to say how much and what species of vegetation are there, but more importantly, to know the stress status of the plants: Is there water stress? Are the plants photosynthesizing at a high rate? We should be able to discern that information down to pixels representing less than a square foot of land area."

Dale Schinstock | EurekAlert!
Further information:
http://www.ksu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>