Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory scientists study soot in megacity pollution

10.05.2006


A team of Los Alamos scientists recently returned from a month-long data-gathering trip to Mexico City as part of an international, multi-agency environmental science collaboration. The March campaign was designed to examine the chemical and physical transformations of gases and aerosols in the polluted outflow from the Mexico City metropolitan area. With a population of 25 million, Mexico City is North America’s largest city, what scientists are calling a megacity. As such, it provides an excellent testing ground for understanding the regional and global impacts of increasing urbanization.



The Los Alamos team was led by Manvendra Dubey and included Claudio Mazzoleni and Thom Rahn. Together, they performed measurements of the radiative and optical properties of soot using a state-of-the-art Los Alamos-developed field-deployable photo-acoustic instrument. The Los Alamos team also provided the only measurements of molecular hydrogen in Mexico City. The Los Alamos measurements were designed to provide a unique data set for quantifying Mexico City’s atmospheric soot, which is little more than fine carbon particles.

Soot is produced by diesel combustion, burning of biomass and power plants. Soot-containing aerosols absorb solar radiation, which causes atmospheric warming. However, soot’s warming potential is determined by complex interactions with other anthropogenic aerosols, such as sulfate and organics, which by scattering solar radiation tend to offset the warming caused by pure soot.


The data are already beginning to tell the story of Mexico City’s environment. A very regular daily profile has emerged revealing peak concentrations of both hydrogen and soot in early morning caused by the high traffic volume and pollution close to the ground. The instrumentation recorded levels of hydrogen at 5 parts per million, which is 10 times more than normal background levels. Scientists theorize that most of the hydrogen is coming from automobiles.

One of the key objectives of the Los Alamos team now is to integrate the net radiative effects of all pollutants: carbon dioxide, aerosols and ozone, and changes in the amount of light that reaches the ground that are observed in Mexico City could help determine the global warming potential of a megacity.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov
http://aerosols.lanl.gov
http://www.lanl.gov/news/index.php?fuseaction=nr.subject

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>