Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory scientists study soot in megacity pollution

10.05.2006


A team of Los Alamos scientists recently returned from a month-long data-gathering trip to Mexico City as part of an international, multi-agency environmental science collaboration. The March campaign was designed to examine the chemical and physical transformations of gases and aerosols in the polluted outflow from the Mexico City metropolitan area. With a population of 25 million, Mexico City is North America’s largest city, what scientists are calling a megacity. As such, it provides an excellent testing ground for understanding the regional and global impacts of increasing urbanization.



The Los Alamos team was led by Manvendra Dubey and included Claudio Mazzoleni and Thom Rahn. Together, they performed measurements of the radiative and optical properties of soot using a state-of-the-art Los Alamos-developed field-deployable photo-acoustic instrument. The Los Alamos team also provided the only measurements of molecular hydrogen in Mexico City. The Los Alamos measurements were designed to provide a unique data set for quantifying Mexico City’s atmospheric soot, which is little more than fine carbon particles.

Soot is produced by diesel combustion, burning of biomass and power plants. Soot-containing aerosols absorb solar radiation, which causes atmospheric warming. However, soot’s warming potential is determined by complex interactions with other anthropogenic aerosols, such as sulfate and organics, which by scattering solar radiation tend to offset the warming caused by pure soot.


The data are already beginning to tell the story of Mexico City’s environment. A very regular daily profile has emerged revealing peak concentrations of both hydrogen and soot in early morning caused by the high traffic volume and pollution close to the ground. The instrumentation recorded levels of hydrogen at 5 parts per million, which is 10 times more than normal background levels. Scientists theorize that most of the hydrogen is coming from automobiles.

One of the key objectives of the Los Alamos team now is to integrate the net radiative effects of all pollutants: carbon dioxide, aerosols and ozone, and changes in the amount of light that reaches the ground that are observed in Mexico City could help determine the global warming potential of a megacity.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov
http://aerosols.lanl.gov
http://www.lanl.gov/news/index.php?fuseaction=nr.subject

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>