Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laboratory scientists study soot in megacity pollution


A team of Los Alamos scientists recently returned from a month-long data-gathering trip to Mexico City as part of an international, multi-agency environmental science collaboration. The March campaign was designed to examine the chemical and physical transformations of gases and aerosols in the polluted outflow from the Mexico City metropolitan area. With a population of 25 million, Mexico City is North America’s largest city, what scientists are calling a megacity. As such, it provides an excellent testing ground for understanding the regional and global impacts of increasing urbanization.

The Los Alamos team was led by Manvendra Dubey and included Claudio Mazzoleni and Thom Rahn. Together, they performed measurements of the radiative and optical properties of soot using a state-of-the-art Los Alamos-developed field-deployable photo-acoustic instrument. The Los Alamos team also provided the only measurements of molecular hydrogen in Mexico City. The Los Alamos measurements were designed to provide a unique data set for quantifying Mexico City’s atmospheric soot, which is little more than fine carbon particles.

Soot is produced by diesel combustion, burning of biomass and power plants. Soot-containing aerosols absorb solar radiation, which causes atmospheric warming. However, soot’s warming potential is determined by complex interactions with other anthropogenic aerosols, such as sulfate and organics, which by scattering solar radiation tend to offset the warming caused by pure soot.

The data are already beginning to tell the story of Mexico City’s environment. A very regular daily profile has emerged revealing peak concentrations of both hydrogen and soot in early morning caused by the high traffic volume and pollution close to the ground. The instrumentation recorded levels of hydrogen at 5 parts per million, which is 10 times more than normal background levels. Scientists theorize that most of the hydrogen is coming from automobiles.

One of the key objectives of the Los Alamos team now is to integrate the net radiative effects of all pollutants: carbon dioxide, aerosols and ozone, and changes in the amount of light that reaches the ground that are observed in Mexico City could help determine the global warming potential of a megacity.

Todd Hanson | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>