Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants’ role in global warming re-examined in ORNL Science paper

03.05.2006


Estimates of increased plant respiration in response to higher global temperatures may be somewhat overstated as they have not taken into account plants’ ability to adjust to changing conditions, according to researchers from Oak Ridge National Laboratory.



In a Perspectives paper published April 28 by Science, a team led by Tony King cites ORNL findings suggesting that about 9 percent more carbon will be stored in plants and soil with the acclimation of plants included in the model. While this amount is relatively small compared to different climate-carbon simulations performed over the years, the authors note that this acclimation phenomenon should not be ignored.

"This is carbon that might otherwise be released to the atmosphere as carbon dioxide and could further influence future climate change," said King, a researcher in ORNL’s Environmental Sciences Division. "Our ability to accurately predict global change over the next several decades depends upon having a thorough understanding of multiple interacting factors, including plant respiration.


"The fact is that plants adapt to higher temperatures and their levels of respiration adjust downward."

While some previous climate-carbon simulations have included differentiation among vegetation types, none have incorporated an explicit time-dependent acclimation of plant respiration to increasing temperatures. ORNL researchers also looked at the influence of temperature acclimation at both the local ecosystem and global scales.

ORNL’s study looked at the period from 1930 to 2100, with and without acclimation of leaf respiration.

"All other things being equal, as they are in our simulations, more carbon stored in plants and soils corresponds to less carbon released to the atmosphere in response to climate change, and a weaker positive feedback between carbon and climate and a weaker amplification of additional warming," the authors write.

The paper concludes by saying, "There is also a need to better understand the control of respiration itself. The development, testing and adoption of a mechanistic and bio-chemical model of plant respiration are needed. To more reliably project plant respiration and climate-carbon feedbacks in a future climate, this modeling must incorporate response to temperature, including acclimation, at time scales from minutes to years."

On a global scale, plants release about 60 gigatons of carbon dioxide to the atmosphere each year as they carry out their life functions.

Other authors of the Perspectives piece were Carla Gunderson, Wilfred "Mac" Post, David Weston and Stan Wullschleger of the Environmental Sciences Division.

The research was funded by the Department of Energy’s Office of Science/Biological and Environmental Research. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>