Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean sheet for paper making

08.11.2001


New catalyst could bring cleaner paper.
© Corbis


New catalyst means greener paper is not pulp fiction.

Pollution from paper production could be cut, say US chemists, with a new way of refining wood pulp1. But the process must go through the mill before it can convert industry.

During paper production, gluey wood component lignin is stripped out to leave stringy cellulose. The harsh chemicals used create environmental pollutants, such as toxic and long-lasting chlorinated compounds.



A new chemical catalyst makes harmless gas oxygen do the same job, Craig Hill of Emory University in Atlanta, Georgia and his colleagues have shown. "It’s set up for being green chemistry," says joint team leader Ira Weinstock of the US Department of Agriculture Forest Service in Madison, Wisconsin.

"It’s a noble effort," says industrial chemist William Kruper of the Dow Chemical Company in Midland, Michigan. But unless the catalyst’s efficiency is improved, "the industry isn’t going to adopt this technology tomorrow", he warns.

Waste paper

Paper manufacturing is one of the world’s largest industries. It generates 100 million tonnes of wood pulp a year. Using strong chemicals and high temperatures, pulping digests up to 90% of the lignin from wood chips. The resulting slurry is made into low-quality paper such as brown grocery bags.

For premium white paper, pulp is bleached and the remaining lignin is degraded using chlorine or the more environmentally friendly substitute, chlorine dioxide. These chemicals selectively break down lignin rather than cellulose by stealing its electrons, in an ’oxidation’ reaction. The new catalyst replaces this step.

The catalyst - called a polyoxometalate (POM) - was inspired by a protein in wood-digesting fungi. First, POM oxidizes lignin. Then oxygen re-oxidizes POM. This second step converts lignin to harmless carbon dioxide and water and recycles the catalyst.

At the end of the process, the catalyst must be carefully removed to avoid traces ending up in the paper. POM contains the heavy metals tungsten and molybdenum, also of concern to environmentalists.

Although this is "clever chemistry", says Terry Collins of Carnegie Mellon University in Pittsburgh, Pennsylvania, "it’s important that people keep experimenting with alternative technologies".

The inefficiency of the reaction means that 170 tonnes of catalyst are needed for every tonne of wood pulp, points out Collins, who works on green chemistry. This ratio would make working with the catalyst an expensive operation. He feels that new processes should aim to be cheap, efficient and non-toxic.

Weinstock argues that these criteria can be met and that the process can be made economically competitive.

References

  1. Weinstock, I. A. et al. Equilibriating metal-oxide cluster ensembles for oxidation reactions using oxygen in water. Nature, 414, 191 - 195, (2001).


HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-9.html

More articles from Ecology, The Environment and Conservation:

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>