Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean sheet for paper making

08.11.2001


New catalyst could bring cleaner paper.
© Corbis


New catalyst means greener paper is not pulp fiction.

Pollution from paper production could be cut, say US chemists, with a new way of refining wood pulp1. But the process must go through the mill before it can convert industry.

During paper production, gluey wood component lignin is stripped out to leave stringy cellulose. The harsh chemicals used create environmental pollutants, such as toxic and long-lasting chlorinated compounds.



A new chemical catalyst makes harmless gas oxygen do the same job, Craig Hill of Emory University in Atlanta, Georgia and his colleagues have shown. "It’s set up for being green chemistry," says joint team leader Ira Weinstock of the US Department of Agriculture Forest Service in Madison, Wisconsin.

"It’s a noble effort," says industrial chemist William Kruper of the Dow Chemical Company in Midland, Michigan. But unless the catalyst’s efficiency is improved, "the industry isn’t going to adopt this technology tomorrow", he warns.

Waste paper

Paper manufacturing is one of the world’s largest industries. It generates 100 million tonnes of wood pulp a year. Using strong chemicals and high temperatures, pulping digests up to 90% of the lignin from wood chips. The resulting slurry is made into low-quality paper such as brown grocery bags.

For premium white paper, pulp is bleached and the remaining lignin is degraded using chlorine or the more environmentally friendly substitute, chlorine dioxide. These chemicals selectively break down lignin rather than cellulose by stealing its electrons, in an ’oxidation’ reaction. The new catalyst replaces this step.

The catalyst - called a polyoxometalate (POM) - was inspired by a protein in wood-digesting fungi. First, POM oxidizes lignin. Then oxygen re-oxidizes POM. This second step converts lignin to harmless carbon dioxide and water and recycles the catalyst.

At the end of the process, the catalyst must be carefully removed to avoid traces ending up in the paper. POM contains the heavy metals tungsten and molybdenum, also of concern to environmentalists.

Although this is "clever chemistry", says Terry Collins of Carnegie Mellon University in Pittsburgh, Pennsylvania, "it’s important that people keep experimenting with alternative technologies".

The inefficiency of the reaction means that 170 tonnes of catalyst are needed for every tonne of wood pulp, points out Collins, who works on green chemistry. This ratio would make working with the catalyst an expensive operation. He feels that new processes should aim to be cheap, efficient and non-toxic.

Weinstock argues that these criteria can be met and that the process can be made economically competitive.

References

  1. Weinstock, I. A. et al. Equilibriating metal-oxide cluster ensembles for oxidation reactions using oxygen in water. Nature, 414, 191 - 195, (2001).


HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-9.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>