Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aston University tackles changing landfill pile


Aston University’s Bio-Energy Research Group (BERG) and Biffa, one of the UK’s largest waste companies, have teamed up to find new ways to recover energy from a changing mix of domestic, commercial and industrial landfill waste.

The Government’s pledge to cut the amount of biodegradable waste going to landfill by 50% from 1995 levels by 2013 means UK landfill operators face a very different pile of rubbish than in the past.

Biffa operates over 30 landfill sites across the UK. Most of these sites recover landfill gas with more than 50% methane to power reciprocating engines that generate electricity for the national grid.

But with increasing amounts of biodegradable waste being diverted, the landfill mix is changing. The diminishing organic and moisture content of the waste, coupled with tighter regulations for new landfill sites, mean lower rates of waste decay and a decline in landfill gas production.

Converting the remaining fraction of organic waste into energy onsite is challenging but essential if the Government is going to meet its target to recover 67% of Britain’s waste by 2015.

An innovative conversion method called pyrolysis could provide the answer. Under one of three national CASE studentships awarded by the Mini-Waste Faraday Partnership, Biffa has teamed up with BERG, a leading research group at Aston University focusing on pyrolysis technology, to investigate converting the organic fraction of various waste streams into a gaseous or liquid fuel to power the existing engines.

Pyrolysis heats up biomass to high temperatures in the absence of oxygen. The technology can convert organic waste into gases or liquids for fuel after separating out valuable metals and other products, which can then be reused in building and construction materials.

BERG will characterise different waste streams, test them in its pyrolysis reactors and evaluate their potential to be used on landfill sites.

“Pyrolysis is a technology with promise. It offers an innovative way to recover energy from waste and reduce our dependence on fossil fuels” said Stamatios Dacey, the BERG PhD student who was awarded the CASE studentship.

Crystal Luxmore | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>