Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aston University tackles changing landfill pile

02.05.2006


Aston University’s Bio-Energy Research Group (BERG) and Biffa, one of the UK’s largest waste companies, have teamed up to find new ways to recover energy from a changing mix of domestic, commercial and industrial landfill waste.



The Government’s pledge to cut the amount of biodegradable waste going to landfill by 50% from 1995 levels by 2013 means UK landfill operators face a very different pile of rubbish than in the past.

Biffa operates over 30 landfill sites across the UK. Most of these sites recover landfill gas with more than 50% methane to power reciprocating engines that generate electricity for the national grid.


But with increasing amounts of biodegradable waste being diverted, the landfill mix is changing. The diminishing organic and moisture content of the waste, coupled with tighter regulations for new landfill sites, mean lower rates of waste decay and a decline in landfill gas production.

Converting the remaining fraction of organic waste into energy onsite is challenging but essential if the Government is going to meet its target to recover 67% of Britain’s waste by 2015.

An innovative conversion method called pyrolysis could provide the answer. Under one of three national CASE studentships awarded by the Mini-Waste Faraday Partnership, Biffa has teamed up with BERG, a leading research group at Aston University focusing on pyrolysis technology, to investigate converting the organic fraction of various waste streams into a gaseous or liquid fuel to power the existing engines.

Pyrolysis heats up biomass to high temperatures in the absence of oxygen. The technology can convert organic waste into gases or liquids for fuel after separating out valuable metals and other products, which can then be reused in building and construction materials.

BERG will characterise different waste streams, test them in its pyrolysis reactors and evaluate their potential to be used on landfill sites.

“Pyrolysis is a technology with promise. It offers an innovative way to recover energy from waste and reduce our dependence on fossil fuels” said Stamatios Dacey, the BERG PhD student who was awarded the CASE studentship.

Crystal Luxmore | alfa
Further information:
http://www.aston-berg.co.uk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>