Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aston University tackles changing landfill pile

02.05.2006


Aston University’s Bio-Energy Research Group (BERG) and Biffa, one of the UK’s largest waste companies, have teamed up to find new ways to recover energy from a changing mix of domestic, commercial and industrial landfill waste.



The Government’s pledge to cut the amount of biodegradable waste going to landfill by 50% from 1995 levels by 2013 means UK landfill operators face a very different pile of rubbish than in the past.

Biffa operates over 30 landfill sites across the UK. Most of these sites recover landfill gas with more than 50% methane to power reciprocating engines that generate electricity for the national grid.


But with increasing amounts of biodegradable waste being diverted, the landfill mix is changing. The diminishing organic and moisture content of the waste, coupled with tighter regulations for new landfill sites, mean lower rates of waste decay and a decline in landfill gas production.

Converting the remaining fraction of organic waste into energy onsite is challenging but essential if the Government is going to meet its target to recover 67% of Britain’s waste by 2015.

An innovative conversion method called pyrolysis could provide the answer. Under one of three national CASE studentships awarded by the Mini-Waste Faraday Partnership, Biffa has teamed up with BERG, a leading research group at Aston University focusing on pyrolysis technology, to investigate converting the organic fraction of various waste streams into a gaseous or liquid fuel to power the existing engines.

Pyrolysis heats up biomass to high temperatures in the absence of oxygen. The technology can convert organic waste into gases or liquids for fuel after separating out valuable metals and other products, which can then be reused in building and construction materials.

BERG will characterise different waste streams, test them in its pyrolysis reactors and evaluate their potential to be used on landfill sites.

“Pyrolysis is a technology with promise. It offers an innovative way to recover energy from waste and reduce our dependence on fossil fuels” said Stamatios Dacey, the BERG PhD student who was awarded the CASE studentship.

Crystal Luxmore | alfa
Further information:
http://www.aston-berg.co.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>