Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Reef Resilience: Better Feeders Survive Bleaching

28.04.2006


Eating as the key to health
Coral bleaching has severely damaged or killed 30 percent of the world’s coral reefs, turning brightly colored coral a ghostly white. Research shows that some “super-feeding” corals can survive. Photo: Jon Witman/Brown University


Global warming and other threats are killing coral reefs through a phenomenon known as bleaching. But why do some corals survive? A new study, published in Nature, is the first to document a trait that helps some coral species live through, and recover from, bleaching. The survivors’ secret: Ramped up feeding rates.

In an experiment with three species of Hawaiian corals researchers found that, when bleached, the branching coral Montipora capitata sharply increased its intake of tiny plankton, making it much more likely to bounce back. The findings suggest that any coral, regardless of shape or location, may recover from bleaching if it can ramp up feeding.

James Palardy, a Brown University graduate student and co-author of the Nature paper, said the results indicate that these corals may become the dominant species in reefs and could play a role in protecting these critical marine ecosystems.



“These ‘super-feeders’ have an ecological advantage, one that may protect reefs from extinction,” Palardy said. “If our results hold up with other species, we may well see that these resilient corals are the future for our reefs.”

Coral reefs reduce beach erosion, support tourism and serve as breeding grounds and habitat for fish. A 2006 report by the United Nations Environment Programme put the value of coral reefs at $100,000 to $600,000 per square kilometer per year.

But the UNEP report states that 30 percent of the world’s coral reefs are severely damaged or dead and that 60 percent of remaining reefs will vanish by 2030. Several factors are to blame, from pollution to overfishing. Scientists say the biggest new threat is global warming. Because corals are highly sensitive to temperature, even small amounts of warming can trigger bleaching.

When water temperatures rise, coral expel single-celled algae called zooxanthellae, which live inside coral tissue and give corals their color and, more importantly, supply the bulk of their food energy. If bleaching persists, corals die, leaving behind ghostly limestone skeletons.

Some corals can survive bleaching. The reasons for this, however, aren’t well understood. Palardy and his colleagues had a hunch: In the absence of algae-derived nutrition, corals may tap energy reserves or increase feeding, a process where corals use their tiny tentacles to “grab” passing plankton and stuff them into their stomachs.

To study the role metabolism and feeding might play in coral resiliency, Palardy, a Brown Ph.D. student in the Department of Ecology and Evolutionary Biology, collaborated with Andréa Grottoli, an assistant professor of geological sciences at Ohio State University, and Lisa Rodrigues, a post-doctoral research fellow in biology at Villanova University.

The team took chunks of three types of healthy Hawaiian corals – M. capitata, another branching coral called Porites compressa and the mounding coral Porites lobata – from colonies off the coast of Oahu and put them in eight outdoor tanks. Water in four of the tanks was kept at 27° C, the typical reef water temperature. In the other four, water temperature was elevated to 30° C, warm enough to trigger bleaching. After 30 days in the tanks, the team measured chlorophyll concentrations, photosynthetic rates, and lipid levels in some corals. The remaining corals were returned to the reef to recover.

After two weeks on the reef, researchers covered some of the healthy and bleached corals with fine mesh boxes, which kept plankton out of reach. The boxes went over the corals eight hours a day, then removed for an hour each night for five days. The goal: Empty their stomachs, so that the plankton the corals consumed could be accurately measured. Researchers dissected the corals and painstakingly counted plankton in their stomachs. Researchers also created a system of measurements that gauged the corals’ energy input from feeding.

Four weeks later, the scientists weighed the remaining corals and again measured chlorophyll concentrations, photosynthetic rates and lipid levels.

The results: P. compressa and P. lobata depleted their energy reserves during bleaching. And when these bleached and unbleached corals were compared, feeding didn’t increase. In contrast, the feeding rates of bleached M. capitata increased five-fold, allowing them to replenish their energy reserves – making it more likely that they’ll survive and spawn after a bleaching event.

“The results were a surprise,” Palardy said. “Previous studies showed that thick tissue layers or mounded shapes made corals resilient. But we found a new resiliency factor – feeding. In evolutionary terms, corals that eat more may win.”

The National Science Foundation, the Mellon Foundation, and a William Penn Fellowship funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>