Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Reef Resilience: Better Feeders Survive Bleaching

28.04.2006


Eating as the key to health
Coral bleaching has severely damaged or killed 30 percent of the world’s coral reefs, turning brightly colored coral a ghostly white. Research shows that some “super-feeding” corals can survive. Photo: Jon Witman/Brown University


Global warming and other threats are killing coral reefs through a phenomenon known as bleaching. But why do some corals survive? A new study, published in Nature, is the first to document a trait that helps some coral species live through, and recover from, bleaching. The survivors’ secret: Ramped up feeding rates.

In an experiment with three species of Hawaiian corals researchers found that, when bleached, the branching coral Montipora capitata sharply increased its intake of tiny plankton, making it much more likely to bounce back. The findings suggest that any coral, regardless of shape or location, may recover from bleaching if it can ramp up feeding.

James Palardy, a Brown University graduate student and co-author of the Nature paper, said the results indicate that these corals may become the dominant species in reefs and could play a role in protecting these critical marine ecosystems.



“These ‘super-feeders’ have an ecological advantage, one that may protect reefs from extinction,” Palardy said. “If our results hold up with other species, we may well see that these resilient corals are the future for our reefs.”

Coral reefs reduce beach erosion, support tourism and serve as breeding grounds and habitat for fish. A 2006 report by the United Nations Environment Programme put the value of coral reefs at $100,000 to $600,000 per square kilometer per year.

But the UNEP report states that 30 percent of the world’s coral reefs are severely damaged or dead and that 60 percent of remaining reefs will vanish by 2030. Several factors are to blame, from pollution to overfishing. Scientists say the biggest new threat is global warming. Because corals are highly sensitive to temperature, even small amounts of warming can trigger bleaching.

When water temperatures rise, coral expel single-celled algae called zooxanthellae, which live inside coral tissue and give corals their color and, more importantly, supply the bulk of their food energy. If bleaching persists, corals die, leaving behind ghostly limestone skeletons.

Some corals can survive bleaching. The reasons for this, however, aren’t well understood. Palardy and his colleagues had a hunch: In the absence of algae-derived nutrition, corals may tap energy reserves or increase feeding, a process where corals use their tiny tentacles to “grab” passing plankton and stuff them into their stomachs.

To study the role metabolism and feeding might play in coral resiliency, Palardy, a Brown Ph.D. student in the Department of Ecology and Evolutionary Biology, collaborated with Andréa Grottoli, an assistant professor of geological sciences at Ohio State University, and Lisa Rodrigues, a post-doctoral research fellow in biology at Villanova University.

The team took chunks of three types of healthy Hawaiian corals – M. capitata, another branching coral called Porites compressa and the mounding coral Porites lobata – from colonies off the coast of Oahu and put them in eight outdoor tanks. Water in four of the tanks was kept at 27° C, the typical reef water temperature. In the other four, water temperature was elevated to 30° C, warm enough to trigger bleaching. After 30 days in the tanks, the team measured chlorophyll concentrations, photosynthetic rates, and lipid levels in some corals. The remaining corals were returned to the reef to recover.

After two weeks on the reef, researchers covered some of the healthy and bleached corals with fine mesh boxes, which kept plankton out of reach. The boxes went over the corals eight hours a day, then removed for an hour each night for five days. The goal: Empty their stomachs, so that the plankton the corals consumed could be accurately measured. Researchers dissected the corals and painstakingly counted plankton in their stomachs. Researchers also created a system of measurements that gauged the corals’ energy input from feeding.

Four weeks later, the scientists weighed the remaining corals and again measured chlorophyll concentrations, photosynthetic rates and lipid levels.

The results: P. compressa and P. lobata depleted their energy reserves during bleaching. And when these bleached and unbleached corals were compared, feeding didn’t increase. In contrast, the feeding rates of bleached M. capitata increased five-fold, allowing them to replenish their energy reserves – making it more likely that they’ll survive and spawn after a bleaching event.

“The results were a surprise,” Palardy said. “Previous studies showed that thick tissue layers or mounded shapes made corals resilient. But we found a new resiliency factor – feeding. In evolutionary terms, corals that eat more may win.”

The National Science Foundation, the Mellon Foundation, and a William Penn Fellowship funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>