Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Data Combined to Improve Hurricane Landfall Forecasts

26.04.2006


These are computer model forecast tracks for tropical storms Cindy and Gert from July, 2005. The black curve is the actual track. The red curve represents the forecast track without NASA data, and the blue curved track includes NASA data. The shapes along the lines indicate storm locations every 6 hours. These figures show that by adding aircraft dropsonde (sensor) data and satellite wind data, the computer model forecast more accurate landfall time and locations and improved the storm track by about 50 percent. Credit: University of Utah


Data gathered from last year’s NASA hurricane research mission and a NASA satellite have improved tropical storm landfall and storm strength forecasts in computer models.

Ocean surface wind data gathered from NASA’s QuikSCAT satellite were combined with data from aircraft sensors dropped into tropical storms and fed into a new generation weather research and forecasting (WRF) computer model used to predict weather. The researchers in this study also used data from the National Oceanic and Atmospheric Administration’s (NOAA) GOES-11 satellite rapid-scan cloud track wind data. When the data were added, the resulting prediction showed improved track and intensity forecast of tropical storms.

"Our results indicate the quite positive impact of those data on forecasts of two landfall storms in last season: tropical storms Cindy and Gert." said Zhaoxia Pu, scientist at the University of Utah, Salt Lake City, and lead researcher on the study. She reported the results on April 24 at the American Meteorological Society’s Conference on Hurricanes and Tropical Meteorology in Monterey, Calif. The detailed results of this study have been submitted to the Monthly Weather Review for publication.



"By incorporating the aircraft sensor and QuiKSCAT data, the new generation WRF computer model was able to reproduce structure of the rainfalls that caused the flooding during the landfall of two storms," Pu said.

In July 2005, the Tropical Cloud Systems and Processes (TCSP) mission investigated two hurricanes and several tropical storms. The mission was based at the Juan Santamaria Airfield in San Jose, Costa Rica, and flew 13 NASA ER-2 science flights, including missions to Hurricanes Dennis and Emily. NASA, NOAA, and the Costa Rican Centro Nacional de Alta Tecnologia were participants in the mission.

The P-3 aircraft from the NOAA Hurricane Research Division flew 20 coordinated missions with the NASA research aircraft to investigate developing tropical disturbances. Sensors dropped from airplanes, called dropsondes, gathered data on temperature, winds, pressure and humidity inside the storms.

The team also employed small, unmanned aerial vehicles, a series of balloon-borne weather probes and several low-earth, polar-orbiting and geostationary NASA and NOAA satellites.

The results from this study imply that satellite data are a valuable source for improving tropical cyclone forecasts. In addition, the 2005 field experiment provided valuable data and opportunities for better understanding tropical cyclones.

The new generation WRF computer model is widely used for forecasting and research. It has been used by many local government agencies, research institutes and commercial industries for real-time forecasts.

Pu said that NASA data’s enhancement of WRF hurricane computer model forecasts will encourage the forecast community to incorporate it in all future hurricane forecasts.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>