Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants are surprisingly ancient, arising 140-168 million years ago

13.04.2006


These insects, now dominant in terrestrial ecosystems, flourished with the rise of flowering plants



Ants are considerably older than previously believed, having originated 140 to 168 million years ago, according to new Harvard University research published in the journal Science. But these resilient insects, now found in terrestrial ecosystems the world over, apparently only began to diversify about 100 million years ago in concert with the flowering plants, the Harvard scientists say.

Led by Corrie S. Moreau and Naomi E. Pierce, the researchers reconstructed the ant family tree using DNA sequencing of six genes from 139 representative ant genera, encompassing 19 of 20 ant subfamilies around the world.


"Ants are a dominant feature of nearly all terrestrial ecosystems, and yet we know surprisingly little about their evolutionary history: the major groupings of ants, how they are related to each other, and when and how they arose," says Moreau, a graduate student in Harvard’s Department of Organismic and Evolutionary Biology. "This work provides a clear picture of how this extraordinarily dominant -- in ecological terms -- and successful -- in evolutionary terms -- group of insects originated and diversified."

Moreau, Pierce, and colleagues used a "molecular clock" calibrated with 43 fossils distributed throughout the ant family tree to date key events in the evolution of ants, providing a well-supported estimate for the age of modern lineages. Their conclusion that modern-day ants arose 140 to 168 million years ago pushes back the origin of ants at least 40 million years earlier than had previously been believed based on estimates from the fossil record.

"We estimate that ant diversification took off approximately 100 million years ago, along with the rise of flowering plants, the angiosperms," says Pierce, the Sidney A. and John H. Hessel Professor of Biology in Harvard’s Museum of Comparative Zoology. "Our results support the hypothesis that ants were able to capitalize on the ecological opportunities provided by flowering plants and the herbivorous insects that co-evolved with them. These plants provided ants with new habitats both in the forest canopy and in the more complex leaf litter on the forest floor, and the herbivorous insects that evolved alongside flowering plants provided food for ants."

The Harvard researchers found that the poorly known ant subfamily Leptanillinae is the most ancient, followed by two broad groups known as the poneroids (e.g., predatory hunting ants) and the formicoids (e.g., more familiar species such as pavement ants and carpenter ants). Moreau, Pierce, and their colleagues also found that most individual ant subfamilies are more ancient than had been previously proposed, and that the modified stingers found in some ants arose independently at two different points in the course of ant evolution, in the subfamilies Formicinae and Dolichoderinae.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>