Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants are surprisingly ancient, arising 140-168 million years ago

13.04.2006


These insects, now dominant in terrestrial ecosystems, flourished with the rise of flowering plants



Ants are considerably older than previously believed, having originated 140 to 168 million years ago, according to new Harvard University research published in the journal Science. But these resilient insects, now found in terrestrial ecosystems the world over, apparently only began to diversify about 100 million years ago in concert with the flowering plants, the Harvard scientists say.

Led by Corrie S. Moreau and Naomi E. Pierce, the researchers reconstructed the ant family tree using DNA sequencing of six genes from 139 representative ant genera, encompassing 19 of 20 ant subfamilies around the world.


"Ants are a dominant feature of nearly all terrestrial ecosystems, and yet we know surprisingly little about their evolutionary history: the major groupings of ants, how they are related to each other, and when and how they arose," says Moreau, a graduate student in Harvard’s Department of Organismic and Evolutionary Biology. "This work provides a clear picture of how this extraordinarily dominant -- in ecological terms -- and successful -- in evolutionary terms -- group of insects originated and diversified."

Moreau, Pierce, and colleagues used a "molecular clock" calibrated with 43 fossils distributed throughout the ant family tree to date key events in the evolution of ants, providing a well-supported estimate for the age of modern lineages. Their conclusion that modern-day ants arose 140 to 168 million years ago pushes back the origin of ants at least 40 million years earlier than had previously been believed based on estimates from the fossil record.

"We estimate that ant diversification took off approximately 100 million years ago, along with the rise of flowering plants, the angiosperms," says Pierce, the Sidney A. and John H. Hessel Professor of Biology in Harvard’s Museum of Comparative Zoology. "Our results support the hypothesis that ants were able to capitalize on the ecological opportunities provided by flowering plants and the herbivorous insects that co-evolved with them. These plants provided ants with new habitats both in the forest canopy and in the more complex leaf litter on the forest floor, and the herbivorous insects that evolved alongside flowering plants provided food for ants."

The Harvard researchers found that the poorly known ant subfamily Leptanillinae is the most ancient, followed by two broad groups known as the poneroids (e.g., predatory hunting ants) and the formicoids (e.g., more familiar species such as pavement ants and carpenter ants). Moreau, Pierce, and their colleagues also found that most individual ant subfamilies are more ancient than had been previously proposed, and that the modified stingers found in some ants arose independently at two different points in the course of ant evolution, in the subfamilies Formicinae and Dolichoderinae.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>