Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Dead Zone” Summer Killed Billions of Ocean State Mussels

12.04.2006


A “dead zone” that formed in 2001 in Narragansett Bay left a lethal legacy, Brown University research shows. In a study of nine mussel reefs, published in Ecology, researchers report that oxygen-depleted water killed one reef and nearly wiped out the rest. A year later, only one of the nine reefs was recovering. The result was a sharp reduction in the reefs’ ability to filter phytoplankton, a process that helps control “dead zone” formation.


Dead Zone
Waves of dead mussels – researchers estimate the die-off at about 4.5 billion – washed ashore on Prudence Island, left, and elsewhere in Narragansett Bay during the summer of 2001.



Fish kills, foul odors and closed beaches hit Rhode Island’s Narragansett Bay during the summer of 2001. The culprit was hypoxia, or oxygen depletion, which literally suffocates sea life. While some evidence of this “dead zone” could be seen on the bay’s surface, Brown University ecologists went underwater and discovered a massive mussel die-off.

In a survey of nine mussel reefs located in the central bay, researchers found one reef completely wiped out. Of the remaining eight, seven were severely depleted. The ecologists estimate that the number of mussels that died was roughly 4.5 billion, or about 80 percent of the reefs’ population.


Just one month before hypoxia hit, researchers surveyed the same reefs and saw acres of healthy, densely packed mussels blanketing the estuary floor.

“What we saw was a local extinction,” said Andrew Altieri, a new Ph.D. graduate from Brown University’s Department of Ecology and Evolutionary Biology. “The mussel population was devastated. If the magnitude of this die-off was visible from the surface, there would’ve been public alarm.”

Altieri conducted the surveys with Jon Witman, a marine ecologist and an associate professor in the Department of Ecology and Evolutionary Biology. In a report on their research, published in Ecology, Altieri and Witman show that mussel die-off had a lasting effect.

In fall 2002, one year after the die-off, the pair found that only one of the nine reefs was recovering. Altieri and Witman wondered how the loss of so many mussels, which filter minute algae called phytoplankton from the water, might affect the bay’s ecosystem.

So Altieri calculated the filtering capacity of mussels in the reefs, before and after the hypoxic event. They found that the healthy mussels could filter the equivalent of the entire volume of Narragansett Bay in just 20 days. But within weeks of the die-off, that filtering capacity dropped by 75 percent.

Altieri said this is an important, and troubling, finding for water quality and sea life in the bay.

Hypoxia can start when fertilizer or sewage spills into coastal waters, carrying nitrogen, phosphorus and other nutrients. Often fueled by warm temperatures and a lack of circulation, this nutrient rush can cause algae blooms. When the algae dies, it sinks to the bottom, where it is consumed by bacteria – along with dissolved oxygen. This is what happened in Narragansett Bay in the summer of 2001 and again in the summer of 2003.

Mussels, however, can help control nutrient overload and hypoxia by consuming phytoplankton, which reduces bottom-dwelling bacteria. “When we lose mussels, we may be losing the ability to prevent future dead zones from forming,” Altieri said. “So these sorts of extinctions may trigger a downward spiral, with coastal zones less able to handle environmental degradation.”

According to a 2004 United Nations Environment Program report, the number of areas hit by hypoxia worldwide has doubled since 1990. “Dead zones” can be found along the east coast of the United States, in the seas of Europe, as well off Australia, Brazil, and Japan. One of the biggest “dead zones” is in the Gulf of Mexico, where it has grown to an area as big as New Jersey.

Altieri and Witman said lessons from Narragansett Bay could be applied to other “dead zones.”

“When you lose a foundation species such as mussels – which filter water and provide food and habitat for other organisms – you see a large and lasting effect on the ecosystem,” Witman said. Added Altieri: “We’ve already seen this in Chesapeake Bay and other coastal estuaries, where loss of filter-feeding oysters has led to runaway effects of pollution and hypoxia and prevented restoration of these shellfish.”

The National Oceanic and Atmospheric Administration, the Andrew Mellon Foundation, and Rhode Island Sea Grant funded the work.

The Ecology paper is available online.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>