Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite instrument helps tackle mysteries of ozone-eating clouds

11.04.2006


Polar stratospheric clouds have become the focus of many research projects in recent years due to the discovery of their role in ozone depletion, but essential aspects of these clouds remain a mystery. MIPAS, an instrument onboard ESA’s Envisat, is allowing scientists to gain information about these clouds necessary for modelling ozone loss.



"The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is unique in its possibilities to detect polar stratospheric clouds (PSCs) since it is the first instrument with the ability to observe these clouds continuously over the polar regions especially during the polar night," Michael Höpfner of Germany’s Forschungszentrum Karlsruhe GmbH said.

Using data collected by MIPAS, a German-designed instrument that observes the atmosphere in middle infrared range, Höpfner and other scientists discovered a belt of nitric acid trihydrate (NAT) PSCs developing in the polar night over Antarctica in 2003 about one month after the first PSCs, which were composed of water crystals, were detected.


There are two classifications of PSCs – Type I clouds contain hydrated droplets of nitric acid and sulphuric acid, while Type II clouds consist of relatively pure water ice crystals.

The presence of NAT was detected because of MIPAS’ ability to map the atmospheric concentrations of more than 20 trace gases, including ozone as well as the pollutants that attack it.

"This has been the first evidence for the existence of NAT PSCs on a large scale," Höpfner said. NAT particles, which contain three molecules of water and one molecule of nitric acid, enhance the potential for ozone destruction in polar regions.

The thinning of the ozone is caused by the presence of man-made pollutants in the atmosphere such as chlorine, originating from man-made pollutants like chlorofluorocarbons (CFCs). During the southern hemisphere winter, temperatures drop to very low levels causing the chemicals in the stratosphere, which is in complete darkness during the winter, to freeze and form PSCs that contain chlorine.

Now banned under the Montreal Protocol, CFCs were once widely used in aerosol cans and refrigerators – and have not vanished from the air. CFCs themselves are inert, but ultraviolet radiation high in the atmosphere breaks them down into their constituent parts, which can be highly reactive with ozone.

As the polar spring arrives, sunlight returns and creates chemical reactions in PSCs responsible for converting benign forms of chlorine into highly ozone-reactive radicals that spur ozone depletion. A single molecule of chlorine has the potential to break down thousands of molecules of ozone.

NAT PSCs enhance the potential for chlorine activation and can also sediment and irreversibly remove nitrogen from the lower stratosphere, causing a process known as denitrification, which slows the return of chlorine to its inactive form and allows for ozone destruction to continue.

Höpfner and fellow scientists were able to explain the sudden NAT formation of PSCs in 2003 by temperature disturbances in waves over the Antarctic Peninsula and the Ellsworth Mountains, suggesting a more significant role for mountain waves in the formation of Antarctic’s PSCs than previously thought.

According to Höpfner, the presence of PSCs could intensify in the future due to a globally changing climate where the Earth’s surface gets warmer due to trapped greenhouse gases but the stratosphere gets colder, providing an environment in which the clouds can form. An increase in PSCs could counteract the recovery of the ozone layer.

Although scientific efforts have focused on determining PSC composition and their formation mechanisms, the process causing the ozone depletion is far from understood. In order to gain a better understanding of ozone depletion, scientists must continue obtaining data which allows them to measure the key species involved in the process.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMBZNNFGLE_planet_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>