Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Albatross study shows regional differences in ocean contamination

06.04.2006


As long-lived predators at the top of the marine food chain, albatrosses accumulate toxic contaminants such as PCBs, DDT, and mercury in their bodies. A new study has found dramatic differences in contaminant levels between two closely related albatross species that forage in different areas of the North Pacific. Researchers also found that levels of PCBs and DDT have increased in both species over the past ten years.

The differences in contaminant levels between black-footed and Laysan albatrosses indicate regional differences in the contamination of North Pacific waters, said Myra Finkelstein, a postdoctoral researcher at the University of California, Santa Cruz, who led the study.

"The black-footed albatrosses forage mostly in the California Current, whereas the Laysan albatrosses forage at higher latitudes near Alaska. So it appears that the California Current system has significantly higher concentrations of these contaminants," Finkelstein said.



The researchers published their findings in the April issue of the journal Ecological Applications.

Mercury and organochlorine compounds such as PCBs (polychlorinated biphenyls), DDT, and related compounds persist in the environment for a long time and build up in the tissues of animals high on the food chain. Analysis of blood samples showed that concentrations of these compounds in black-footed albatrosses were 370 to 460 percent higher than in Laysan albatrosses.

The two species breed at the same sites in the Hawaiian Islands. But when they leave their breeding colonies on foraging trips, the black-footed albatrosses head northeast toward the West Coast of North America, while Laysan albatrosses head northwest toward the northern and western regions of the North Pacific.

Black-footed and Laysan albatrosses both consume a mixed diet of squid, fish, and fish eggs. Finkelstein analyzed nitrogen isotope ratios in the two species--an indicator of an animal’s "trophic level," or how high it is on the food chain--and found no significant difference.

"Biomagnification means that you get higher concentrations of these compounds as you go up the food chain, but these species appear to be feeding at the same trophic level. We saw huge differences in contaminant levels, which we attribute, at least in part, to the differences in foraging patterns between the two species," Finkelstein said.

The high contaminant load in black-footed albatrosses foraging in the California Current probably reflects the long history of industrial and agricultural discharges along the West Coast, Finkelstein said. But she added that the distribution and transport of contaminants in the North Pacific involves processes that are still not fully understood.

Concentrations of DDE (the main breakdown product of DDT) and PCBs in both black-footed and Laysan albatrosses were 130 to 360 percent higher in the samples Finkelstein collected in 2000 and 2001 than in samples collected by previous researchers in 1991 and 1992. The increases were much greater in black-footed albatrosses than in Laysan albatrosses, Finkelstein noted. DDE concentrations, for example, increased 360 percent in black-footed and 170 percent in Laysan albatrosses.

Many countries do not regulate the manufacture and use of PCBs and DDT as strictly as the United States does now, and these compounds continue to be released into the marine environment.

"The increases we saw compared with ten years ago probably reflect the ongoing use of these chemicals in countries that border the Pacific," Finkelstein said.

The biggest current threat to albatross populations in the North Pacific is the longline fishing industry, which kills significant numbers of both black-footed and Laysan albatrosses. But the contaminants measured in this study may also take a toll. Comparable levels of these contaminants in other species, such as herring gulls and Caspian terns in the Great Lakes region, have been associated with a variety of adverse effects, including reproductive deformities, endocrine disruption, and immune system dysfunction.

"It is very difficult to show a cause-and-effect link in a wild population, but there is evidence of health impacts in other species at these contaminant levels," Finkelstein said.

Humans are exposed to the same contaminants when they eat seafood, she added.

"It is important to realize that these contaminants have long-term effects, and we are only beginning to understand many of the subtle effects they can have, such as endocrine disruption and effects on the immune system," she said. "A lot of people think this issue has been taken care of, but it is still very much a problem."

Finkelstein, who earned a Ph.D. in ocean sciences at UCSC in 2003, conducted this study as part of her thesis research. Her advisers were Donald Croll, associate professor of ecology and evolutionary biology, and Donald Smith, professor of environmental toxicology. In addition to Croll and Smith, the coauthors of the paper include UCSC researchers Bradford Keitt and Bernie Tershy; Walter Jarman of the U.N. Environmental Program; Sue Rodriguez-Pastor of the University of Colorado, Boulder; David Anderson of Wake Forest University; and Paul Sievert of the U.S. Geological Survey.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>