Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Albatross study shows regional differences in ocean contamination

06.04.2006


As long-lived predators at the top of the marine food chain, albatrosses accumulate toxic contaminants such as PCBs, DDT, and mercury in their bodies. A new study has found dramatic differences in contaminant levels between two closely related albatross species that forage in different areas of the North Pacific. Researchers also found that levels of PCBs and DDT have increased in both species over the past ten years.

The differences in contaminant levels between black-footed and Laysan albatrosses indicate regional differences in the contamination of North Pacific waters, said Myra Finkelstein, a postdoctoral researcher at the University of California, Santa Cruz, who led the study.

"The black-footed albatrosses forage mostly in the California Current, whereas the Laysan albatrosses forage at higher latitudes near Alaska. So it appears that the California Current system has significantly higher concentrations of these contaminants," Finkelstein said.



The researchers published their findings in the April issue of the journal Ecological Applications.

Mercury and organochlorine compounds such as PCBs (polychlorinated biphenyls), DDT, and related compounds persist in the environment for a long time and build up in the tissues of animals high on the food chain. Analysis of blood samples showed that concentrations of these compounds in black-footed albatrosses were 370 to 460 percent higher than in Laysan albatrosses.

The two species breed at the same sites in the Hawaiian Islands. But when they leave their breeding colonies on foraging trips, the black-footed albatrosses head northeast toward the West Coast of North America, while Laysan albatrosses head northwest toward the northern and western regions of the North Pacific.

Black-footed and Laysan albatrosses both consume a mixed diet of squid, fish, and fish eggs. Finkelstein analyzed nitrogen isotope ratios in the two species--an indicator of an animal’s "trophic level," or how high it is on the food chain--and found no significant difference.

"Biomagnification means that you get higher concentrations of these compounds as you go up the food chain, but these species appear to be feeding at the same trophic level. We saw huge differences in contaminant levels, which we attribute, at least in part, to the differences in foraging patterns between the two species," Finkelstein said.

The high contaminant load in black-footed albatrosses foraging in the California Current probably reflects the long history of industrial and agricultural discharges along the West Coast, Finkelstein said. But she added that the distribution and transport of contaminants in the North Pacific involves processes that are still not fully understood.

Concentrations of DDE (the main breakdown product of DDT) and PCBs in both black-footed and Laysan albatrosses were 130 to 360 percent higher in the samples Finkelstein collected in 2000 and 2001 than in samples collected by previous researchers in 1991 and 1992. The increases were much greater in black-footed albatrosses than in Laysan albatrosses, Finkelstein noted. DDE concentrations, for example, increased 360 percent in black-footed and 170 percent in Laysan albatrosses.

Many countries do not regulate the manufacture and use of PCBs and DDT as strictly as the United States does now, and these compounds continue to be released into the marine environment.

"The increases we saw compared with ten years ago probably reflect the ongoing use of these chemicals in countries that border the Pacific," Finkelstein said.

The biggest current threat to albatross populations in the North Pacific is the longline fishing industry, which kills significant numbers of both black-footed and Laysan albatrosses. But the contaminants measured in this study may also take a toll. Comparable levels of these contaminants in other species, such as herring gulls and Caspian terns in the Great Lakes region, have been associated with a variety of adverse effects, including reproductive deformities, endocrine disruption, and immune system dysfunction.

"It is very difficult to show a cause-and-effect link in a wild population, but there is evidence of health impacts in other species at these contaminant levels," Finkelstein said.

Humans are exposed to the same contaminants when they eat seafood, she added.

"It is important to realize that these contaminants have long-term effects, and we are only beginning to understand many of the subtle effects they can have, such as endocrine disruption and effects on the immune system," she said. "A lot of people think this issue has been taken care of, but it is still very much a problem."

Finkelstein, who earned a Ph.D. in ocean sciences at UCSC in 2003, conducted this study as part of her thesis research. Her advisers were Donald Croll, associate professor of ecology and evolutionary biology, and Donald Smith, professor of environmental toxicology. In addition to Croll and Smith, the coauthors of the paper include UCSC researchers Bradford Keitt and Bernie Tershy; Walter Jarman of the U.N. Environmental Program; Sue Rodriguez-Pastor of the University of Colorado, Boulder; David Anderson of Wake Forest University; and Paul Sievert of the U.S. Geological Survey.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>