Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Albatross study shows regional differences in ocean contamination


As long-lived predators at the top of the marine food chain, albatrosses accumulate toxic contaminants such as PCBs, DDT, and mercury in their bodies. A new study has found dramatic differences in contaminant levels between two closely related albatross species that forage in different areas of the North Pacific. Researchers also found that levels of PCBs and DDT have increased in both species over the past ten years.

The differences in contaminant levels between black-footed and Laysan albatrosses indicate regional differences in the contamination of North Pacific waters, said Myra Finkelstein, a postdoctoral researcher at the University of California, Santa Cruz, who led the study.

"The black-footed albatrosses forage mostly in the California Current, whereas the Laysan albatrosses forage at higher latitudes near Alaska. So it appears that the California Current system has significantly higher concentrations of these contaminants," Finkelstein said.

The researchers published their findings in the April issue of the journal Ecological Applications.

Mercury and organochlorine compounds such as PCBs (polychlorinated biphenyls), DDT, and related compounds persist in the environment for a long time and build up in the tissues of animals high on the food chain. Analysis of blood samples showed that concentrations of these compounds in black-footed albatrosses were 370 to 460 percent higher than in Laysan albatrosses.

The two species breed at the same sites in the Hawaiian Islands. But when they leave their breeding colonies on foraging trips, the black-footed albatrosses head northeast toward the West Coast of North America, while Laysan albatrosses head northwest toward the northern and western regions of the North Pacific.

Black-footed and Laysan albatrosses both consume a mixed diet of squid, fish, and fish eggs. Finkelstein analyzed nitrogen isotope ratios in the two species--an indicator of an animal’s "trophic level," or how high it is on the food chain--and found no significant difference.

"Biomagnification means that you get higher concentrations of these compounds as you go up the food chain, but these species appear to be feeding at the same trophic level. We saw huge differences in contaminant levels, which we attribute, at least in part, to the differences in foraging patterns between the two species," Finkelstein said.

The high contaminant load in black-footed albatrosses foraging in the California Current probably reflects the long history of industrial and agricultural discharges along the West Coast, Finkelstein said. But she added that the distribution and transport of contaminants in the North Pacific involves processes that are still not fully understood.

Concentrations of DDE (the main breakdown product of DDT) and PCBs in both black-footed and Laysan albatrosses were 130 to 360 percent higher in the samples Finkelstein collected in 2000 and 2001 than in samples collected by previous researchers in 1991 and 1992. The increases were much greater in black-footed albatrosses than in Laysan albatrosses, Finkelstein noted. DDE concentrations, for example, increased 360 percent in black-footed and 170 percent in Laysan albatrosses.

Many countries do not regulate the manufacture and use of PCBs and DDT as strictly as the United States does now, and these compounds continue to be released into the marine environment.

"The increases we saw compared with ten years ago probably reflect the ongoing use of these chemicals in countries that border the Pacific," Finkelstein said.

The biggest current threat to albatross populations in the North Pacific is the longline fishing industry, which kills significant numbers of both black-footed and Laysan albatrosses. But the contaminants measured in this study may also take a toll. Comparable levels of these contaminants in other species, such as herring gulls and Caspian terns in the Great Lakes region, have been associated with a variety of adverse effects, including reproductive deformities, endocrine disruption, and immune system dysfunction.

"It is very difficult to show a cause-and-effect link in a wild population, but there is evidence of health impacts in other species at these contaminant levels," Finkelstein said.

Humans are exposed to the same contaminants when they eat seafood, she added.

"It is important to realize that these contaminants have long-term effects, and we are only beginning to understand many of the subtle effects they can have, such as endocrine disruption and effects on the immune system," she said. "A lot of people think this issue has been taken care of, but it is still very much a problem."

Finkelstein, who earned a Ph.D. in ocean sciences at UCSC in 2003, conducted this study as part of her thesis research. Her advisers were Donald Croll, associate professor of ecology and evolutionary biology, and Donald Smith, professor of environmental toxicology. In addition to Croll and Smith, the coauthors of the paper include UCSC researchers Bradford Keitt and Bernie Tershy; Walter Jarman of the U.N. Environmental Program; Sue Rodriguez-Pastor of the University of Colorado, Boulder; David Anderson of Wake Forest University; and Paul Sievert of the U.S. Geological Survey.

Tim Stephens | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>