Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants used to detect gas leaks, from outer space!


Gas leaks can be potentially life threatening in the home, but the presence of gas stresses out plants too. Professor Mike Steven and colleagues from the University of Nottingham have found that changes in the physical properties of plants can act as an early warning of leaks in natural gas pipelines. “Our study was about testing the ability of satellite remote systems to monitor gas leaks via the spectrum of reflected light from plants, which changes when the plants are stressed”, says Steven. “A satellite image of the stress responses in vegetation should identify gas leaks at least as well as a visual report from a helicopter, which is the current method, and would be safer and possibly cheaper.” Steven will present his research on Thursday 6th April at the Society for Experimental Biology’s Annual Main Meeting in Canterbury [session P3]

Satellite image of gas leaks from a pipe supplied by Prof. Mike Stevens

In the UK in 2001, emission of methane from the gas distribution system was 16% of the total UK methane emissions; such losses are not only costly to the gas distributors, but can contribute to global warming since methane has a global warming potential about 8 times that of CO2. When plant roots are starved of oxygen the stress caused to the plant can be quantified from the spectral quality of light reflected from the leaves, even before the plant looks to be stressed. In the area surrounding a gas leak the escaping methane means the plant roots cannot get enough oxygen and so aerial parts of the plant appear stressed in satellite images detecting reflected light.

This remote-sensing technology can be used to detect any type of stress that causes asphyxiation of the plant roots. Steven and his colleagues are already considering other uses for the detection system. One such application may be to detect carbon dioxide leaking from underground stores used in proposed carbon capture and storage schemes. These stores are intended to help to prevent global warming: the argument is that if CO2 is sequestered indefinitely in underground reservoirs then it can’t be acting to absorb heat in the earth’s atmosphere. “Our own research attempts to address some of the issues related to public acceptability and safety: Will there be leaks? What environmental effects will any leaks have? Can we detect leaks?” says Steven.

Lucy Moore | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>