Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compost made of oil

27.03.2006


Solid oil waste should be processed into compost. Specialists of Kazan State University and the Open Joint-Stock Company “Nizhnekamskneft” stick to this opinion. The obtained compost is practically nontoxic, and bio-utilization of waste may be an excellent alternative to harmful waste storage and combustion.

Solid waste of petrochemical production (oil-slimes) belongs to the most persistent environment pollutants. Oil-slimes consist of oil carbohydrates and products of their processing, including asphaltic-resinous substances, as well as phenols, xylols, styrene and multiple other toxic and carcinogenic substances. Of course, oil-refining plants possess slime storage and waste disposal plants, but they do not solve the problem. Therefore, biotechnological methods of oil-slime disposal, including composting, increasingly attract specialists.

As foreign experience shows, the soil containing 3.5 percent of oil carbohydrates, can be purified via composting within 4 to 5 months, while by itself it would be purified within three years. Russian scientists have undertaken their own research.



The proving ground for them was slime accumulators of the ‘Nizhnekamskneftekhim” plant that had been duly operating for more than 40 years. For field trials, the researchers used the upper layer of oil-slime, which had been dried for a year prior to that at a special site. In May, the experimentalists formed compost beds: first, they laid a 30-centimeter layer of wood chips (wood chips representing exhaust biofilter filler material), they put oil-slime on top, then – another layer of aerating agent and a layer of oil-slime. The bed was 140 centimeters high. The site with compost beds had a small slope for redundant liquid drainage.

The slimes of the “Nizhnekamskneftekhim” enterprise are populated with their own microflora that aggressively destroys waste. Appropriate conditions were created for microbes: good airing of compost beds was ensured and nutrients – laprol production wastage– were poured on the beds. In response to the care, microorganisms destroyed major contamination within four months. 14 more months were taken up by degradation of residual, mainly hard-to-reach slime components. In a year and a half after composting had begun, oil carbohydrates concentration in the bed equaled about 12 g/kg, the initial level of contamination making more than 56 g/kg, that is, the decrease was by 85 percent. Content of stable fraction of multiring aromatic hydrocarbons reduced by 90 percent. During the year and a half, the compost toxicity sometimes reduced or sometimes slightly increased, but the final variant turned out to be quite harmless, even red radish grows upon the compost.

This is how the researchers found the way to efficiently neutralize petrochemical slime and to simultaneously utilize two more petrochemical wastes - exhaust biofilter filler material and laprol production wastage. The researchers assume that the process will be improved and they will achieve finer cleaning of petrochemical waste due to interaction of microorganisms and plants. Them the composting technology may be used for recovery of disrupted lands, scrap-heaps reclamation and forest growing on exhausted soils.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>