Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swire ship helps marine scientists study

23.03.2006


A cargo ship is set to provide oceanographers with vital data on the oceans’ ability to slow the build up of carbon dioxide in the atmosphere.



Scientists from the National Oceanography Centre, Southampton will be working with the Swire group using one of its cargo vessels, the MV Indotrans Celebes, to gain access to remote areas of the globe where the oceans’ interaction with the atmosphere is largely unknown. Instruments installed on the MV Indotrans Celebes will record changing patterns in the flow of carbon dioxide from the air into surface waters then send the data immediately to the scientists via satellite. The project is fully funded by The Swire Group Charitable Trust.

Dr David Hydes who is leading the project said, ‘We were delighted when the Swire Climate Task Force which works under the group’s Environmental Committee approached us with the offer to use the MV Indotrans Celebes. The route between Jakarta and the Gulf of Mexico will provide information from areas where little or even no data exists – particularly in the Indian Ocean. As well as helping our own research this information will be made available to international research projects that are already assessing carbon levels elsewhere in the world.’


The oceans play a major role in reducing the rate at which the planet is warmed up by absorbing carbon dioxide from the air. There are fears that global warming will accelerate if the oceans cannot cope with carbon dioxide produced by burning fossil fuels at present rates. There is also evidence that as the oceans absorb more carbon dioxide they become more acid – threatening the health of calcareous ecosystems like coral reefs. It is essential to know where and how carbon dioxide is entering and changing the oceans.

Mr Martin Cresswell, a member of the task force and a veteran on shipping within Swire said, ‘We are very excited to be able to assist the oceanographers in this project. Our staff and crew are keen to be involved in a study of such international relevance.’

The route of the MV Indotrans Celebes from Jakarta to the Gulf of Mexico takes the ship across the Indian Ocean, the Red Sea, the Mediterranean and across the Atlantic. Data gathered in the project will link with on-going observations in the Atlantic. The Atlantic has already been the subject of concern with studies by the National Oceanography Centre, Southampton showing that the Gulf Stream has slowed by 30 per cent in the last decade.

Dr Hydes continued: ‘Detailed continuous measurements from the MV Indotrans Celebes will enable us to build up an accurate knowledge of climate related change. The instruments and electronic systems are designed to be exceptionally sensitive yet require minimum maintenance. They also need to be robust enough to survive life in seawater and extreme temperatures and humidity.’

A water circuit will be installed on the ship in parallel to the ship’s cooling water unit. As the water flows through a special tank, carbon dioxide is measured along with dissolved oxygen, temperature and the salinity of the sampled water. The data is recorded in the engine room along with the ship’s GPS position. The record is then transmitted to the National Oceanography Centre, Southampton where it is checked and transferred to a live web page and made available to the global scientific community.

Dr David Hydes | alfa
Further information:
http://www.noc.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>