Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swire ship helps marine scientists study

23.03.2006


A cargo ship is set to provide oceanographers with vital data on the oceans’ ability to slow the build up of carbon dioxide in the atmosphere.



Scientists from the National Oceanography Centre, Southampton will be working with the Swire group using one of its cargo vessels, the MV Indotrans Celebes, to gain access to remote areas of the globe where the oceans’ interaction with the atmosphere is largely unknown. Instruments installed on the MV Indotrans Celebes will record changing patterns in the flow of carbon dioxide from the air into surface waters then send the data immediately to the scientists via satellite. The project is fully funded by The Swire Group Charitable Trust.

Dr David Hydes who is leading the project said, ‘We were delighted when the Swire Climate Task Force which works under the group’s Environmental Committee approached us with the offer to use the MV Indotrans Celebes. The route between Jakarta and the Gulf of Mexico will provide information from areas where little or even no data exists – particularly in the Indian Ocean. As well as helping our own research this information will be made available to international research projects that are already assessing carbon levels elsewhere in the world.’


The oceans play a major role in reducing the rate at which the planet is warmed up by absorbing carbon dioxide from the air. There are fears that global warming will accelerate if the oceans cannot cope with carbon dioxide produced by burning fossil fuels at present rates. There is also evidence that as the oceans absorb more carbon dioxide they become more acid – threatening the health of calcareous ecosystems like coral reefs. It is essential to know where and how carbon dioxide is entering and changing the oceans.

Mr Martin Cresswell, a member of the task force and a veteran on shipping within Swire said, ‘We are very excited to be able to assist the oceanographers in this project. Our staff and crew are keen to be involved in a study of such international relevance.’

The route of the MV Indotrans Celebes from Jakarta to the Gulf of Mexico takes the ship across the Indian Ocean, the Red Sea, the Mediterranean and across the Atlantic. Data gathered in the project will link with on-going observations in the Atlantic. The Atlantic has already been the subject of concern with studies by the National Oceanography Centre, Southampton showing that the Gulf Stream has slowed by 30 per cent in the last decade.

Dr Hydes continued: ‘Detailed continuous measurements from the MV Indotrans Celebes will enable us to build up an accurate knowledge of climate related change. The instruments and electronic systems are designed to be exceptionally sensitive yet require minimum maintenance. They also need to be robust enough to survive life in seawater and extreme temperatures and humidity.’

A water circuit will be installed on the ship in parallel to the ship’s cooling water unit. As the water flows through a special tank, carbon dioxide is measured along with dissolved oxygen, temperature and the salinity of the sampled water. The data is recorded in the engine room along with the ship’s GPS position. The record is then transmitted to the National Oceanography Centre, Southampton where it is checked and transferred to a live web page and made available to the global scientific community.

Dr David Hydes | alfa
Further information:
http://www.noc.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>