Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny ‘cages’ could trap carbon dioxide and help stop climate change

20.03.2006


A natural physical process has been identified that could play a key role in secure sub-seabed storage of carbon dioxide produced by fossil-fuelled power stations.



With EPSRC funding, a team at the Centre for Gas Hydrate Research, at Heriot-Watt University is investigating how, in some conditions, seawater and carbon dioxide could combine into ice-like compounds in which the water molecules form cavities that act as cages, trapping the carbon dioxide molecules.

In the unlikely event of carbon dioxide starting to leak into the sea from an under-seabed disposal site (e.g. a depleted North Sea oil or gas reservoir), this process could add a second line of defence preventing its escape.


This is because, as the carbon dioxide comes into contact with the seawater in the pores of seafloor sediments above it, the compounds (called carbon dioxide hydrates) would form. This would create a secondary seal, blocking sediment pores and cracks, and slowing or preventing leakage of the carbon dioxide.

Professor Bahman Tohidi is leading the project. “We want to identify the type of seabed locations where sediment, temperature and pressure are conducive to the formation of carbon dioxide hydrates,” he says. “This data can then be used to help identify the securest locations for carbon dioxide storage and can aid in the development of methods for monitoring potential CO2 leakage. In the future, it may even be possible to manipulate the system to promote CO2 hydrate formation, extending the number of maximum-security sites that are available.”

Combining engineering expertise with computer modelling and geology skills, the research team is examining exactly how and where hydrates form, and establishing the optimum conditions that enable this process to take place. Their work includes the use of an experimental facility to simulate conditions in different sub-seabed environments with different types of sediment, and to observe hydrate formation when carbon dioxide is introduced. They have also developed tiny 2-dimensional ‘sediment micromodels’ (layers of glass etched with acid to simulate sediments) to help explore how hydrate crystals grow at pore scale in seafloor sediments.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>