Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Offers Preview of Ice Sheet Melting, Rapid Climate Changes

15.03.2006


The main extents of the Scandinavian Ice Sheet are shown in this digital elevation model of the sampling area outlined in gray. The letters and triangles represent different sampling sites. Image credit: adapted from The Land Processes Distributed Active Archive Center


Behavior of Scandinavian Ice Sheet at the end of the last Ice Age may preview loss of Greenland Ice Sheet due to global warming

The retreat of a massive ice sheet that once covered much of northern Europe has been described for the first time, and researchers believe it may provide a sneak preview of how present-day ice sheets in Greenland and Antarctica will act in the face of global warming.

The study, which appears in the current issue of the journal Science, was led by researchers from the Lamont-Doherty Earth Observatory and Oregon State University and contributed to by scientists from eight European institutes. They conclude that ice sheets in different parts of the world can react quite differently as the Earth warms.



"When we look at the Scandinavian Ice Sheet, we sometimes see it actually growing larger and sometimes rapidly disappearing, depending on whether increased snow offsets melting effects or not," said Vincent Rinterknecht, a post-doctoral research scientist at Lamont-Doherty Earth Observatory who is the study’s lead author and who conducted much of the research while he was a doctoral student at Oregon State. "Our work showed that it actually grew for a long period while the climate was warming but still very cold, and then rapidly disintegrated once the climate warmed even further."

The authors say the same dynamics of climate change and ice sheet growth may be at work today and probably mean that in the face of future global warming, ice across large portions of Antarctica may actually increase volume, but not at a rate that will counterbalance projected losses to the massive Greenland ice sheet. By itself, and without any offsetting mechanisms, a collapse of the Greenland ice sheet would raise global sea levels by about 20 to 25 feet. There is also concern that the rapid injection of large amounts of fresh water into this part of the North Atlantic Ocean may interfere with the ocean circulation system that is responsible for keeping much of Europe warm.

The timing of the ice sheet’s retreat has, until now, been poorly understood because of the relatively few radiocarbon dated sites in the region. In their study, the researchers used a technique to determine the time that rocks have been exposed to cosmic rays from outer space, which pass through the Earth’s atmosphere but cannot penetrate ice to any great depth. Using the method, known as cosmogenic surface exposure dating, Rinterknecht and his colleagues measured the amount of an isotope of the element beryllium, 10Be, formed when cosmic rays strike the surface of a rock. Knowing the rate at which 10Be forms and decays allowed the scientists to accurately determine how long a rock surface has been exposed and, therefore, when the ice sheet likely retreated.

The huge Scandinavian Ice Sheet the scientists studied once covered much of Northern Europe and formed during the most recent Ice Age, which lasted from about 100,000 to 10,000 years ago. At its peak it was about 6,000 feet thick and, after the ice sheet in North America, was the largest in the Northern Hemisphere. The researchers combined climate information, largely obtained from ice cores drilled in Greenland, with sea level records and records of deep-sea sediments to create a larger picture of how the ice sheet fluctuated within a changing climate.

The study was supported by the National Science Foundation’s Paleoclimate Program and the French Institut National de Physique Nuclèaire et de Physique de Particules and Institut National des Sciences de l’Univers.

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines — earth sciences, biological sciences, engineering sciences, social sciences and health sciences — and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor. For more information, visit www.earth.columbia.edu.

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers seeking fundamental knowledge about the origin, evolution and future of the natural world. More than 200 research scientists study the planet from its deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean. From global climate change to earthquakes, volcanoes, nonrenewable resources, environmental hazards and beyond, Observatory scientists provide a rational basis for the difficult choices facing humankind in the planet’s stewardship.

Ken Kostel | EurekAlert!
Further information:
http://www.ldeo.columbia.edu
http://www.columbia.edu
http://www.earth.columbia.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>