Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Offers Preview of Ice Sheet Melting, Rapid Climate Changes


The main extents of the Scandinavian Ice Sheet are shown in this digital elevation model of the sampling area outlined in gray. The letters and triangles represent different sampling sites. Image credit: adapted from The Land Processes Distributed Active Archive Center

Behavior of Scandinavian Ice Sheet at the end of the last Ice Age may preview loss of Greenland Ice Sheet due to global warming

The retreat of a massive ice sheet that once covered much of northern Europe has been described for the first time, and researchers believe it may provide a sneak preview of how present-day ice sheets in Greenland and Antarctica will act in the face of global warming.

The study, which appears in the current issue of the journal Science, was led by researchers from the Lamont-Doherty Earth Observatory and Oregon State University and contributed to by scientists from eight European institutes. They conclude that ice sheets in different parts of the world can react quite differently as the Earth warms.

"When we look at the Scandinavian Ice Sheet, we sometimes see it actually growing larger and sometimes rapidly disappearing, depending on whether increased snow offsets melting effects or not," said Vincent Rinterknecht, a post-doctoral research scientist at Lamont-Doherty Earth Observatory who is the study’s lead author and who conducted much of the research while he was a doctoral student at Oregon State. "Our work showed that it actually grew for a long period while the climate was warming but still very cold, and then rapidly disintegrated once the climate warmed even further."

The authors say the same dynamics of climate change and ice sheet growth may be at work today and probably mean that in the face of future global warming, ice across large portions of Antarctica may actually increase volume, but not at a rate that will counterbalance projected losses to the massive Greenland ice sheet. By itself, and without any offsetting mechanisms, a collapse of the Greenland ice sheet would raise global sea levels by about 20 to 25 feet. There is also concern that the rapid injection of large amounts of fresh water into this part of the North Atlantic Ocean may interfere with the ocean circulation system that is responsible for keeping much of Europe warm.

The timing of the ice sheet’s retreat has, until now, been poorly understood because of the relatively few radiocarbon dated sites in the region. In their study, the researchers used a technique to determine the time that rocks have been exposed to cosmic rays from outer space, which pass through the Earth’s atmosphere but cannot penetrate ice to any great depth. Using the method, known as cosmogenic surface exposure dating, Rinterknecht and his colleagues measured the amount of an isotope of the element beryllium, 10Be, formed when cosmic rays strike the surface of a rock. Knowing the rate at which 10Be forms and decays allowed the scientists to accurately determine how long a rock surface has been exposed and, therefore, when the ice sheet likely retreated.

The huge Scandinavian Ice Sheet the scientists studied once covered much of Northern Europe and formed during the most recent Ice Age, which lasted from about 100,000 to 10,000 years ago. At its peak it was about 6,000 feet thick and, after the ice sheet in North America, was the largest in the Northern Hemisphere. The researchers combined climate information, largely obtained from ice cores drilled in Greenland, with sea level records and records of deep-sea sediments to create a larger picture of how the ice sheet fluctuated within a changing climate.

The study was supported by the National Science Foundation’s Paleoclimate Program and the French Institut National de Physique Nuclèaire et de Physique de Particules and Institut National des Sciences de l’Univers.

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines — earth sciences, biological sciences, engineering sciences, social sciences and health sciences — and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor. For more information, visit

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers seeking fundamental knowledge about the origin, evolution and future of the natural world. More than 200 research scientists study the planet from its deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean. From global climate change to earthquakes, volcanoes, nonrenewable resources, environmental hazards and beyond, Observatory scientists provide a rational basis for the difficult choices facing humankind in the planet’s stewardship.

Ken Kostel | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>