Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover new microbial life in the Mediterranean


Researchers from the University of Essex have discovered a deep-sea oasis with new microbial life forms that could have significant implications for biotechnology. The findings have been published this week in the journal Nature.

The researchers have found that microbial activity, biomass and diversity are greatly increased at the interface between seawater and a salt-saturated brine lake, 3.3 kilometres below the surface of the Mediterranean. These life forms could have significant biotechnological applications such as the development of drugs, the use of enzymes in the manufacture of chemicals and the use of metabolites in the food industry.

The Essex team have been working with researchers from across Europe on the BIODEEP (Biotechnologies from the Deep) project. In order to investigate the depths of the Mediterranean, they employed high-precision sampling equipment including a 4,000m length of cable containing an optical fibre string for a remote-controlled camera.

Dr Terry McGenity, the lead scientist on the Essex team, explained: ‘The hypersaline brine lake, in a depression on the seafloor known as Bannock Basin, was formed many thousands of years ago by dissolution of rock salt that became exposed to seawater as a result of earth movement. Because of the density difference and lack of turbulence at these depths, seawater lies on top of the brine without mixing. It is in this 2.5 metre interface, where there is the change from oxygen-rich seawater to anoxic, salt-saturated brine that microbial life flourishes.’

‘The dramatic increase in microbial activity that we have found may seem perverse given that high concentrations of salt are thought to inhibit life. However, although high salt concentrations do make life more stressful for most microbes, many have adapted to tolerate or even thrive in such environments. The density difference actually serves to trap particles containing organic matter while microbes are also supplied from below with gaseous methane, generated in the anoxic hypersaline brine. Particulate organic matter and methane are food for microbes and so encourage growth.’

The BIODEEP consortium consists of researchers from Groningen, Milan, Messina and Braunschweig as well as those from Essex. Exploratory cruises, led by Drs Cesare Corselli (Milan) and Michael Yakimov (Messina) were conducted in 2001, 2002 and 2003.

Kate Clayton | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>