Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new microbial life in the Mediterranean

14.03.2006


Researchers from the University of Essex have discovered a deep-sea oasis with new microbial life forms that could have significant implications for biotechnology. The findings have been published this week in the journal Nature.

The researchers have found that microbial activity, biomass and diversity are greatly increased at the interface between seawater and a salt-saturated brine lake, 3.3 kilometres below the surface of the Mediterranean. These life forms could have significant biotechnological applications such as the development of drugs, the use of enzymes in the manufacture of chemicals and the use of metabolites in the food industry.

The Essex team have been working with researchers from across Europe on the BIODEEP (Biotechnologies from the Deep) project. In order to investigate the depths of the Mediterranean, they employed high-precision sampling equipment including a 4,000m length of cable containing an optical fibre string for a remote-controlled camera.



Dr Terry McGenity, the lead scientist on the Essex team, explained: ‘The hypersaline brine lake, in a depression on the seafloor known as Bannock Basin, was formed many thousands of years ago by dissolution of rock salt that became exposed to seawater as a result of earth movement. Because of the density difference and lack of turbulence at these depths, seawater lies on top of the brine without mixing. It is in this 2.5 metre interface, where there is the change from oxygen-rich seawater to anoxic, salt-saturated brine that microbial life flourishes.’

‘The dramatic increase in microbial activity that we have found may seem perverse given that high concentrations of salt are thought to inhibit life. However, although high salt concentrations do make life more stressful for most microbes, many have adapted to tolerate or even thrive in such environments. The density difference actually serves to trap particles containing organic matter while microbes are also supplied from below with gaseous methane, generated in the anoxic hypersaline brine. Particulate organic matter and methane are food for microbes and so encourage growth.’

The BIODEEP consortium consists of researchers from Groningen, Milan, Messina and Braunschweig as well as those from Essex. Exploratory cruises, led by Drs Cesare Corselli (Milan) and Michael Yakimov (Messina) were conducted in 2001, 2002 and 2003.

Kate Clayton | alfa
Further information:
http://www.geo.unimib.it/BioDeep/Project.html
http://www.essex.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>