Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leave it to salmon to leave no stone unturned

13.03.2006


Jonathan Moore, a University of Washington biologist in aquatic and fishery sciences, holds a female king salmon from Lake Nerka in Alaska. He estimates she weighs more than 30 pounds. Photo credit: University of Washington


Like an armada of small rototillers, female salmon can industriously churn up entire stream beds from end to end, sometimes more than once, using just their tails.

For decades ecologists have believed that salmon nest-digging triggered only local effects. But a University of Washington researcher writes in this month’s BioScience journal that the silt, minerals and nutrients that are unleashed have ecosystemwide effects, causing changes in rivers and lakes far from the nests.

From decreasing the amount of algae there is to eat to possibly influencing when aquatic insects emerge, spawning salmon can be extraordinary "environmental engineers," says Jonathan Moore, a UW graduate student in aquatic and fishery sciences.



Ignoring this role can cause missteps in managing salmon runs or attempting to rehabilitate habitat, he says. A major loss in the number of salmon, for example, doesn’t just affect future generations of that fish alone.

"In streams with high densities of salmon, the disturbance from spawning impacts virtually all aspects of stream ecology," he says.

The female salmon, of course, isn’t concerned about all that. She simply wants to lay her eggs in a nice, gravel-bottom bowl that’s free of fine sediments that can smother them.

But consider the efforts of the grand dames of the salmon world, the female chinook – or king – salmon. The largest females are more than a yard long and tip the scales at 45 pounds or more. The biggest nests are nearly a foot and a half deep and extend up to 17 square yards –about the size of two parking-lot stalls. The rims around these craters can be the bane of boaters who, even with boats meant to navigate in shallow waters, can find their vessels grounded.

Smaller species of salmon that spawn at higher densities are capable of even more widespread tilling, according to Moore, who has for six summers worked with sockeye salmon through the UW’s Alaska Salmon Program. Using counts of spawning sockeye for the last 50 years and previously measured nest sizes, Moore calculates that every summer the sockeye disturb at least 30 percent of the stream beds of two Alaskan streams he studied.

And in years when salmon populations are high, sockeye dig up entire stream beds more than once, being forced to superimpose new nests on top of old nests when the females run out of room.

Moore’s work and the UW’s Alaska Salmon Program is funded by the National Science Foundation, the Gordon and Betty Moore Foundation and Alaska salmon processors.

The rototilling effect probably happens wherever salmon are found in high densities, such as British Columbia, Alaska and even some individual streams in the Pacific Northwest, Moore says. Kennedy Creek, for example, is a small stream that flows into south Puget Sound and since 1968 has had chum salmon in high-enough densities that they have caused the amount of algae and stream insects to decline.

Scientists have long known of the habitat-changing activities such as dam building by beavers, but much of ecology has assumed that most other organisms simply react to the physical and chemical conditions around them. A handful of papers since 1999, including one by Moore in 2004, has focused on the disturbance created by spawning salmon and the ecosystem at large. In this most recent paper, Moore also outlines a conceptual framework he’s developed that gives ecologists a way to formulate when the abundance of animals and their activities – be they spawning salmon or some other kind of animal – make them impossible to ignore as ecosystem engineers.

"One specific application to stream restoration in the Pacific Northwest, for example, deals with the practice of fertilizing salmon streams with the carcasses of dead salmon obtained from hatcheries," says Daniel Schindler, UW associate professor of aquatic and fishery sciences. "Although this does replace some of the nutrients that salmon returning from the sea would normally provide, it entirely ignores the fact that live salmon play a diverse suite of roles in streams, including helping to disperse those nutrients."

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>