Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Combination of processes results in cleaner petrol


One problem confronting the oil industry is that extracted mineral oil (due to increasing scarcity) is becoming heavier and ’dirtier’. This is reflected, for instance, in a higher content of aromatics (which among other things lead to soot emissions during combustion in diesel engines) and of sulphur (which among things causes acid rain). At the same time, the global ceilings for aromatics and sulphur content in fuels are becoming increasingly strict.

The Delft-based PhD student Xander Dupain has investigated a method which produces cleaner petrol using the method of ’catalytic cracking’. Catalytic cracking, with a worldwide processing capacity of over 500 million tonnes of oil per year, is one of the most important processes applied in modern oil refineries and the prime method for making petrol from oil. In addition it is an important way of producing diesel blends and valuable products such as propene and butene. The disadvantage of catalytic cracking is that a further expensive process (hydrotreatment) is often required to render the petrol and diesel sufficiently clean and bring it into line with the necessary specifications.

The core of Dupain’s method is a combination of catalytic cracking with the Fischer-Tropsch Synthesis process. This chemical process was invented in the 1920s by the German researchers Franz Fischer and Hans Tropsch and further developed in Germany during the Second World War for the production of synthetic fuels from coal. Due to the relatively low oil prices in the period following the Second World War this method then mostly went out of fashion, with the exception of South Africa where – prompted by the international oil embargo – it was applied by the Sasol company to meet fuel demands. In recent years, as oil prices rise, the process has been experiencing a revival: with the activities of Shell in Malaysia and Qatar, for instance. It is now primarily being applied to obtain relatively clean synthetic diesel from natural gas and to make a series of other products which contain extremely low concentrations of sulphur, nitrogen and aromatics. Dupain believes it can be economically and environmentally interesting to catalytically crack the fairly ’heavy’ faction (waxes) which is created by the Fischer-Tropsch Synthesis process. At the moment this cracking is still done using expensive hydrocracking that focuses mainly on the production of diesel and that also involves high consumption of hydrogen.

Catalytic cracking of the products from Fischer-Tropsch Synthesis results in clean and high-quality petrol. Moreover, it is possible to produce good diesel as a by-product – and the process also creates relatively large quantities of propene and butene. Is it above all this latter aspect that leads Dupain to think that the combination of a Fischer-Tropsch installation with a catalytic cracker can also be interesting in economic terms. After all, propene is an important raw material for the plastics industry. Demand for propene is set to rise in the coming years.

Frank Nuijens | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>