Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bering Sea ecosystem responding to changes in Arctic climate

10.03.2006


Effects could extend from base of food chain to native hunters



Physical changes--including rising air and seawater temperatures and decreasing seasonal ice cover--appear to be the cause of a series of biological changes in the northern Bering Sea ecosystem that could have long-range and irreversible effects on the animals that live there and on the people who depend on them for their livelihoods.

In a paper published March 10 in the journal Science, a team of U.S. and Canadian researchers use data from long-term observations of physical properties and biological communities to conclude that previously documented physical changes in the Arctic in recent years are profoundly affecting Arctic life.


The northern Bering Sea provides critical habitat for large populations of sea ducks, gray whales, bearded seals and walruses, all of which depend on small bottom-dwelling creatures for sustenance. These bottom-dwellers, in turn, are accustomed to colder water temperatures and long periods of extensive sea ice cover.

However, "a change from arctic to sub-arctic conditions is under way in the northern Bering Sea," according to the researchers, and is causing a shift toward conditions favoring both water-column and bottom-feeding fish and other animals that until now have stayed in more southerly, warmer sea waters.

As a result, the ranges of region’s typical inhabitants can be expected to move northward and away from the small, isolated Native communities on the Bering Sea coast that subsist on the animals.

"We’re seeing that a change in the physical conditions is driving a change in the ecosystems," said Jackie Grebmeier, a researcher at the University of Tennessee and one of the paper’s co-authors.

Grebmeier said the new report is unusual in that it looks at the potential effects of a changing climate in the Arctic primarily through a life-sciences lens, rather than an analysis of the physics of climate change. "It’s a biology driven, integrated look at what’s going," Grebmeier said.

Grebmeier is chief scientist for the Western Shelf-Basin Interactions (SBI) research project, which conducted a series of research cruises to observe changes in the carbon balance of the offshore areas of the Alaskan Arctic and their effects on the food chain. The cruises included a number of researchers supported by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), and other federal agencies.

NSF and the Office of Naval Research (ONR) jointly funded SBI.

NSF and NOAA also funded U.S. researchers who contributed data collected by the Bering Strait Environmental Observatory, which annually samples waters in the northern Bering Sea to assess the biological status of productive animal communities on the sea floor.

Those highly productive waters currently act as sponges for carbon dioxide, absorbing quantities of the gas that otherwise would remain in the atmosphere where it would be expected to contribute to warming. But, the researchers say, if the biological trends they observe in the northern Bering Sea persist and are not reversible, the accompanying shift in species and ecosystem structure could have important implications for the role of the sea as a "carbon sink."

James Overland, a co-author of the paper and an oceanographer at NOAA’s Pacific Marine Environmental Laboratory (PMEL) in Seattle, added that the changes researchers are observing are not uniform throughout the Bering Sea. But both are tied to the nature of the sea ice.

"The northern Bering Sea ecosystem is changing as well as that in the southeast," he said. "In the southeast, fish population and (bottom-dweller) changes are happening in the context of a complete loss of sea ice. But in the northern Bering Sea, ecological changes are occurring in the context of shifts in the quality of the sea ice. The ice there is broken and thin compared with ice floes that were more the norm."

Satellite observations and other measurements, for example, combined with observations of native Yupik hunters, confirm that sea ice extent and thickness have become greatly reduced in recent years.

Also, observations by scientists on the SBI research cruises in 2004--scheduled for publication in a separate report in the journal Aquatic Mammals--confirm that walrus mothers were leaving their pups when sea ice the animals normally use as a summer resting platform retreated to the north.

Shifts in fish populations have also been observed, including the appearance much farther north of juvenile pink salmon in rivers that drain into the Arctic Ocean. Salmon feed on pollock, a species that is beginning to appear in larger numbers in the northern Bering Sea, possibly in response to warmer ocean temperatures.

"What we are seeing," Grebmeier concluded, "is a change in the boundary between the sub-Arctic and the Arctic ecosystem. The potential is real for an ecosystem shift that will be felt father north."

But, Overland noted, continued observations are needed to fully understand the scope and potential permanence of the changes. "Both physical and biological indicators need to be watched closely over the next few years to track the persistence of changes in the context of natural variability," he said.

Peter West | EurekAlert!
Further information:
http://www.nsf.gov
http://www.noaa.gov
http://www.tennessee.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>