Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bering Sea ecosystem responding to changes in Arctic climate

10.03.2006


Effects could extend from base of food chain to native hunters



Physical changes--including rising air and seawater temperatures and decreasing seasonal ice cover--appear to be the cause of a series of biological changes in the northern Bering Sea ecosystem that could have long-range and irreversible effects on the animals that live there and on the people who depend on them for their livelihoods.

In a paper published March 10 in the journal Science, a team of U.S. and Canadian researchers use data from long-term observations of physical properties and biological communities to conclude that previously documented physical changes in the Arctic in recent years are profoundly affecting Arctic life.


The northern Bering Sea provides critical habitat for large populations of sea ducks, gray whales, bearded seals and walruses, all of which depend on small bottom-dwelling creatures for sustenance. These bottom-dwellers, in turn, are accustomed to colder water temperatures and long periods of extensive sea ice cover.

However, "a change from arctic to sub-arctic conditions is under way in the northern Bering Sea," according to the researchers, and is causing a shift toward conditions favoring both water-column and bottom-feeding fish and other animals that until now have stayed in more southerly, warmer sea waters.

As a result, the ranges of region’s typical inhabitants can be expected to move northward and away from the small, isolated Native communities on the Bering Sea coast that subsist on the animals.

"We’re seeing that a change in the physical conditions is driving a change in the ecosystems," said Jackie Grebmeier, a researcher at the University of Tennessee and one of the paper’s co-authors.

Grebmeier said the new report is unusual in that it looks at the potential effects of a changing climate in the Arctic primarily through a life-sciences lens, rather than an analysis of the physics of climate change. "It’s a biology driven, integrated look at what’s going," Grebmeier said.

Grebmeier is chief scientist for the Western Shelf-Basin Interactions (SBI) research project, which conducted a series of research cruises to observe changes in the carbon balance of the offshore areas of the Alaskan Arctic and their effects on the food chain. The cruises included a number of researchers supported by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), and other federal agencies.

NSF and the Office of Naval Research (ONR) jointly funded SBI.

NSF and NOAA also funded U.S. researchers who contributed data collected by the Bering Strait Environmental Observatory, which annually samples waters in the northern Bering Sea to assess the biological status of productive animal communities on the sea floor.

Those highly productive waters currently act as sponges for carbon dioxide, absorbing quantities of the gas that otherwise would remain in the atmosphere where it would be expected to contribute to warming. But, the researchers say, if the biological trends they observe in the northern Bering Sea persist and are not reversible, the accompanying shift in species and ecosystem structure could have important implications for the role of the sea as a "carbon sink."

James Overland, a co-author of the paper and an oceanographer at NOAA’s Pacific Marine Environmental Laboratory (PMEL) in Seattle, added that the changes researchers are observing are not uniform throughout the Bering Sea. But both are tied to the nature of the sea ice.

"The northern Bering Sea ecosystem is changing as well as that in the southeast," he said. "In the southeast, fish population and (bottom-dweller) changes are happening in the context of a complete loss of sea ice. But in the northern Bering Sea, ecological changes are occurring in the context of shifts in the quality of the sea ice. The ice there is broken and thin compared with ice floes that were more the norm."

Satellite observations and other measurements, for example, combined with observations of native Yupik hunters, confirm that sea ice extent and thickness have become greatly reduced in recent years.

Also, observations by scientists on the SBI research cruises in 2004--scheduled for publication in a separate report in the journal Aquatic Mammals--confirm that walrus mothers were leaving their pups when sea ice the animals normally use as a summer resting platform retreated to the north.

Shifts in fish populations have also been observed, including the appearance much farther north of juvenile pink salmon in rivers that drain into the Arctic Ocean. Salmon feed on pollock, a species that is beginning to appear in larger numbers in the northern Bering Sea, possibly in response to warmer ocean temperatures.

"What we are seeing," Grebmeier concluded, "is a change in the boundary between the sub-Arctic and the Arctic ecosystem. The potential is real for an ecosystem shift that will be felt father north."

But, Overland noted, continued observations are needed to fully understand the scope and potential permanence of the changes. "Both physical and biological indicators need to be watched closely over the next few years to track the persistence of changes in the context of natural variability," he said.

Peter West | EurekAlert!
Further information:
http://www.nsf.gov
http://www.noaa.gov
http://www.tennessee.edu

More articles from Ecology, The Environment and Conservation:

nachricht Calculating recharge of groundwater more precisely
28.02.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>