Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bering Sea ecosystem responding to changes in Arctic climate

10.03.2006


Effects could extend from base of food chain to native hunters



Physical changes--including rising air and seawater temperatures and decreasing seasonal ice cover--appear to be the cause of a series of biological changes in the northern Bering Sea ecosystem that could have long-range and irreversible effects on the animals that live there and on the people who depend on them for their livelihoods.

In a paper published March 10 in the journal Science, a team of U.S. and Canadian researchers use data from long-term observations of physical properties and biological communities to conclude that previously documented physical changes in the Arctic in recent years are profoundly affecting Arctic life.


The northern Bering Sea provides critical habitat for large populations of sea ducks, gray whales, bearded seals and walruses, all of which depend on small bottom-dwelling creatures for sustenance. These bottom-dwellers, in turn, are accustomed to colder water temperatures and long periods of extensive sea ice cover.

However, "a change from arctic to sub-arctic conditions is under way in the northern Bering Sea," according to the researchers, and is causing a shift toward conditions favoring both water-column and bottom-feeding fish and other animals that until now have stayed in more southerly, warmer sea waters.

As a result, the ranges of region’s typical inhabitants can be expected to move northward and away from the small, isolated Native communities on the Bering Sea coast that subsist on the animals.

"We’re seeing that a change in the physical conditions is driving a change in the ecosystems," said Jackie Grebmeier, a researcher at the University of Tennessee and one of the paper’s co-authors.

Grebmeier said the new report is unusual in that it looks at the potential effects of a changing climate in the Arctic primarily through a life-sciences lens, rather than an analysis of the physics of climate change. "It’s a biology driven, integrated look at what’s going," Grebmeier said.

Grebmeier is chief scientist for the Western Shelf-Basin Interactions (SBI) research project, which conducted a series of research cruises to observe changes in the carbon balance of the offshore areas of the Alaskan Arctic and their effects on the food chain. The cruises included a number of researchers supported by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), and other federal agencies.

NSF and the Office of Naval Research (ONR) jointly funded SBI.

NSF and NOAA also funded U.S. researchers who contributed data collected by the Bering Strait Environmental Observatory, which annually samples waters in the northern Bering Sea to assess the biological status of productive animal communities on the sea floor.

Those highly productive waters currently act as sponges for carbon dioxide, absorbing quantities of the gas that otherwise would remain in the atmosphere where it would be expected to contribute to warming. But, the researchers say, if the biological trends they observe in the northern Bering Sea persist and are not reversible, the accompanying shift in species and ecosystem structure could have important implications for the role of the sea as a "carbon sink."

James Overland, a co-author of the paper and an oceanographer at NOAA’s Pacific Marine Environmental Laboratory (PMEL) in Seattle, added that the changes researchers are observing are not uniform throughout the Bering Sea. But both are tied to the nature of the sea ice.

"The northern Bering Sea ecosystem is changing as well as that in the southeast," he said. "In the southeast, fish population and (bottom-dweller) changes are happening in the context of a complete loss of sea ice. But in the northern Bering Sea, ecological changes are occurring in the context of shifts in the quality of the sea ice. The ice there is broken and thin compared with ice floes that were more the norm."

Satellite observations and other measurements, for example, combined with observations of native Yupik hunters, confirm that sea ice extent and thickness have become greatly reduced in recent years.

Also, observations by scientists on the SBI research cruises in 2004--scheduled for publication in a separate report in the journal Aquatic Mammals--confirm that walrus mothers were leaving their pups when sea ice the animals normally use as a summer resting platform retreated to the north.

Shifts in fish populations have also been observed, including the appearance much farther north of juvenile pink salmon in rivers that drain into the Arctic Ocean. Salmon feed on pollock, a species that is beginning to appear in larger numbers in the northern Bering Sea, possibly in response to warmer ocean temperatures.

"What we are seeing," Grebmeier concluded, "is a change in the boundary between the sub-Arctic and the Arctic ecosystem. The potential is real for an ecosystem shift that will be felt father north."

But, Overland noted, continued observations are needed to fully understand the scope and potential permanence of the changes. "Both physical and biological indicators need to be watched closely over the next few years to track the persistence of changes in the context of natural variability," he said.

Peter West | EurekAlert!
Further information:
http://www.nsf.gov
http://www.noaa.gov
http://www.tennessee.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>