Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bering Sea ecosystem responding to changes in Arctic climate

10.03.2006


Effects could extend from base of food chain to native hunters



Physical changes--including rising air and seawater temperatures and decreasing seasonal ice cover--appear to be the cause of a series of biological changes in the northern Bering Sea ecosystem that could have long-range and irreversible effects on the animals that live there and on the people who depend on them for their livelihoods.

In a paper published March 10 in the journal Science, a team of U.S. and Canadian researchers use data from long-term observations of physical properties and biological communities to conclude that previously documented physical changes in the Arctic in recent years are profoundly affecting Arctic life.


The northern Bering Sea provides critical habitat for large populations of sea ducks, gray whales, bearded seals and walruses, all of which depend on small bottom-dwelling creatures for sustenance. These bottom-dwellers, in turn, are accustomed to colder water temperatures and long periods of extensive sea ice cover.

However, "a change from arctic to sub-arctic conditions is under way in the northern Bering Sea," according to the researchers, and is causing a shift toward conditions favoring both water-column and bottom-feeding fish and other animals that until now have stayed in more southerly, warmer sea waters.

As a result, the ranges of region’s typical inhabitants can be expected to move northward and away from the small, isolated Native communities on the Bering Sea coast that subsist on the animals.

"We’re seeing that a change in the physical conditions is driving a change in the ecosystems," said Jackie Grebmeier, a researcher at the University of Tennessee and one of the paper’s co-authors.

Grebmeier said the new report is unusual in that it looks at the potential effects of a changing climate in the Arctic primarily through a life-sciences lens, rather than an analysis of the physics of climate change. "It’s a biology driven, integrated look at what’s going," Grebmeier said.

Grebmeier is chief scientist for the Western Shelf-Basin Interactions (SBI) research project, which conducted a series of research cruises to observe changes in the carbon balance of the offshore areas of the Alaskan Arctic and their effects on the food chain. The cruises included a number of researchers supported by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), and other federal agencies.

NSF and the Office of Naval Research (ONR) jointly funded SBI.

NSF and NOAA also funded U.S. researchers who contributed data collected by the Bering Strait Environmental Observatory, which annually samples waters in the northern Bering Sea to assess the biological status of productive animal communities on the sea floor.

Those highly productive waters currently act as sponges for carbon dioxide, absorbing quantities of the gas that otherwise would remain in the atmosphere where it would be expected to contribute to warming. But, the researchers say, if the biological trends they observe in the northern Bering Sea persist and are not reversible, the accompanying shift in species and ecosystem structure could have important implications for the role of the sea as a "carbon sink."

James Overland, a co-author of the paper and an oceanographer at NOAA’s Pacific Marine Environmental Laboratory (PMEL) in Seattle, added that the changes researchers are observing are not uniform throughout the Bering Sea. But both are tied to the nature of the sea ice.

"The northern Bering Sea ecosystem is changing as well as that in the southeast," he said. "In the southeast, fish population and (bottom-dweller) changes are happening in the context of a complete loss of sea ice. But in the northern Bering Sea, ecological changes are occurring in the context of shifts in the quality of the sea ice. The ice there is broken and thin compared with ice floes that were more the norm."

Satellite observations and other measurements, for example, combined with observations of native Yupik hunters, confirm that sea ice extent and thickness have become greatly reduced in recent years.

Also, observations by scientists on the SBI research cruises in 2004--scheduled for publication in a separate report in the journal Aquatic Mammals--confirm that walrus mothers were leaving their pups when sea ice the animals normally use as a summer resting platform retreated to the north.

Shifts in fish populations have also been observed, including the appearance much farther north of juvenile pink salmon in rivers that drain into the Arctic Ocean. Salmon feed on pollock, a species that is beginning to appear in larger numbers in the northern Bering Sea, possibly in response to warmer ocean temperatures.

"What we are seeing," Grebmeier concluded, "is a change in the boundary between the sub-Arctic and the Arctic ecosystem. The potential is real for an ecosystem shift that will be felt father north."

But, Overland noted, continued observations are needed to fully understand the scope and potential permanence of the changes. "Both physical and biological indicators need to be watched closely over the next few years to track the persistence of changes in the context of natural variability," he said.

Peter West | EurekAlert!
Further information:
http://www.nsf.gov
http://www.noaa.gov
http://www.tennessee.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>