Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mexico City field campaign to study megacity pollution

07.03.2006


An international team of researchers has headed into the field for one of the most complex campaigns ever undertaken in atmospheric chemistry: a month-long investigation of air pollution as it flows downwind from Mexico City.



The scientists expect that their assessment of the pollution’s impact on regional and global air quality, climate and ecosystems will be applicable to megacities--cities with 10 million or more inhabitants--in locations around the world.

The project, called Megacity Impacts of Regional and Global Environments (MIRAGE), is scheduled to run from March 1 to 29, 2006, and is led by scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., in partnership with researchers at several U.S. universities and other organizations.


MIRAGE is one component of a set of simultaneous field campaigns collectively called Megacity Initiative: Local and Global Research Observations (MILAGRO), an international effort that will observe and quantify air pollution emitted by Mexico City from multiple perspectives. The MIRAGE portion of this larger project is funded by the National Science Foundation (NSF), which is also NCAR’s primary sponsor; other components are supported by the U.S. Department of Energy, the Molina Center on Energy and the Environment, and NASA.

"Mexico City’s pollution probably doesn’t have a global impact, but all urban areas together do, and the world is quickly urbanizing," explains NCAR scientist Sasha Madronich, one of MIRAGE’s principal investigators. "If we can understand the pollution impacts of Mexico City, we can apply this new knowledge to other urban areas across the globe."

The MIRAGE project researchers, who come from more than 60 institutions in the United States, Mexico, and several other nations, will coordinate aircraft and ground-based measurements, satellite observations, and computer modeling in an effort to shed light on four questions:

  • How far downwind does Mexico City’s pollution plume extend?
  • How are the pollutants transformed by chemical reactions occurring downwind of the city?
  • How do the pollutants affect visibility and regional and global climate?
  • How do the urban pollutants interact with pollutants from other sources, such as agricultural and forest fires?

"We’re not looking so much at pollution inside the city, because that’s already fairly well known," Madronich says. "We’re looking at the outflow. For the first time we’ll have an idea of how much pollution is affecting areas outside the city, and be able to understand its full importance."

Because air pollution is complicated, both chemically and physically, and evolves over time and distance, scientists have traditionally faced difficulties in quantifying its components. The MIRAGE team will use aircraft, ground stations, and satellite observations to gather data on how Mexico City’s air pollution ages as it disperses in the first hours and days after emission.

Researchers based in Veracruz, located east of the capital on the Gulf of Mexico, will crisscross Mexico City’s pollution plume in NSF’s C-130 aircraft. Using a complex package of instruments, they’ll make multiple flights to sample the gases and aerosols that comprise the plume, which usually spreads northeast from the city.

They will also set up ground-based instruments at the Technical University of Tecamac, about 25 miles (40 kilometers) northeast of the city. From there, the scientists will launch GPS radiosondes, instrument packages attached to helium balloons that send atmospheric measurements to the ground via radio. The radiosondes will make vertical profiles of winds, temperatures, and humidity from the ground through the lower stratosphere.

MIRAGE is especially significant because it focuses on both aerosols (airborne particles of dust, soot, and other pollutants) and gaseous pollutants (including ozone, nitrogen oxides, carbon monoxide, sulfur dioxide, and hydrocarbons and their oxidation products), according to Anne-Marie Schmoltner, program director in NSF’s division of atmospheric sciences.

"In the past there have been air campaigns during which researchers have made lots of aerosol measurements, and other ones during which they’ve emphasized gas measurements," Madronich says. "The uniqueness of MIRAGE is that it brings them together, allowing us to study interactions between gases and aerosols."

The researchers chose Mexico City for MIRAGE because it is the world’s third largest urban area, has some of the worst air quality in the world, and is situated in the tropics, as are most fast-growing megacities in developing nations.

Current computer models for studying air pollution were developed mainly for cities in industrialized nations, Madronich says. They don’t transfer well to megacities in the developing world, where people are more likely to burn coal and wood and drive vehicles that emit more harmful chemicals.

The field campaign will also provide information about aerosols, such as how long they endure in the atmosphere and how they affect clouds, that is useful for scientists who make computer models of global climate.

"The lifetime of organic aerosols may be longer than climate modelers have thought, and this could have a huge effect on climate," Madronich says.

Most importantly, says Schmoltner, "Air pollution is no longer a local problem. We all share the same atmosphere, so whatever is emitted in one place can have effects far from its origin. This project will produce a wealth of data that will be important to scientists’ understanding of the chemistry of the atmosphere, and to the policy-makers who need to decide on the best strategies for reducing pollutant emissions and their negative impacts."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>