Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IODP scientists acquire ’treasure trove’ of climate records off Tahiti coast

03.03.2006


Investigators retrieve textbook-quality coral fossil sampling to document history of paleoclimatic change



An international team of scientists, supported by the Integrated Ocean Drilling Program, reunited at the University of Bremen to analyze a trove of coral fossil samples retrieved from Tahitian waters during October and November 2005. Two weeks ago, led by chief scientists from France and Japan, the science party started their year-long analysis of 632 meters of fossil material retrieved from 37 boreholes drilled beneath the seafloor. The initial conclusion is that the IODP Tahiti Sea Level Expedition has assembled the most accurate physical evidence available today of changes in sea level during the last deglaciation, including a full record of temperature and salinity changes in the southern Pacific.

Co-chief scientist Gilbert Camoin, of CEREGE, a geoscience research center in France, summarized the expedition’s success: "Tahiti has given us a treasure of records that archive sea level change over approximately the last 20,000 years. Because corals are ultra-sensitive to environmental change, we have been able--by splitting lengths of coral reef cores we acquired-- to get better, more accurate descriptions of reef growth during the sea level rise that occurred after the last glacial maximum, 23000 years ago." Camoin explains that Tahiti was chosen for this expedition because of its unique geology and its location: a relatively stable, volcanic island, Tahiti is subsiding at a rate of just .025 mm per year, in the southern Pacific far away from the previously glaciated regions. "Tahiti presents a microcosm of what’s happening globally in paleoclimatology today," he says.


Japanese co-chief scientist Yasufumi Iryu, of Tohoku University, praises the quality of the cores obtained. "The longest continuous coral core we collected is 3.5 meters long," he confirms. "It represents 350 years of coral growth." Providing a reliable climate record with no gaps, massive coral samples--just five percent of the samples obtained--are highly valued by scientific investigators as they reconstruct climate variability and piece together frequency and amplitude of climatic anomalies such as El Niño.

"Our goal to acquire high-resolution archival paleoclimate records has been met," says Camoin. "Examining the massive coral cores retrieved from 40 to 120 meters below sea level, we identified grooved pairs of light and dark bands, each pair measuring a centimeter in width, and each representing one year of growth." According to Camoin, the coral fossils record age in their grooves. "Using radiometric methods, we are able to determine a coral fossil’s age within 30 years."

Iryu, who specializes in El Niño anomalies, agrees that the age and water depth information found archived in the coral reef cores is simple, but crucial. In addition, "we measured live microbes (bacteria) living in the spaces within the deep fossil reefs. These samples," he confirmed, "have been collected and frozen for DNA sequencing."

"Coral reefs comprise the richest ecosystem on Earth," says Camoin, "and the most fragile." But coral reefs are diminishing, he notes: half of all reefs are expected to disappear in the next few decades. "Coral reefs are playing a prominent role in global matter cycles," Camoin asserts.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>