Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IODP scientists acquire ’treasure trove’ of climate records off Tahiti coast

03.03.2006


Investigators retrieve textbook-quality coral fossil sampling to document history of paleoclimatic change



An international team of scientists, supported by the Integrated Ocean Drilling Program, reunited at the University of Bremen to analyze a trove of coral fossil samples retrieved from Tahitian waters during October and November 2005. Two weeks ago, led by chief scientists from France and Japan, the science party started their year-long analysis of 632 meters of fossil material retrieved from 37 boreholes drilled beneath the seafloor. The initial conclusion is that the IODP Tahiti Sea Level Expedition has assembled the most accurate physical evidence available today of changes in sea level during the last deglaciation, including a full record of temperature and salinity changes in the southern Pacific.

Co-chief scientist Gilbert Camoin, of CEREGE, a geoscience research center in France, summarized the expedition’s success: "Tahiti has given us a treasure of records that archive sea level change over approximately the last 20,000 years. Because corals are ultra-sensitive to environmental change, we have been able--by splitting lengths of coral reef cores we acquired-- to get better, more accurate descriptions of reef growth during the sea level rise that occurred after the last glacial maximum, 23000 years ago." Camoin explains that Tahiti was chosen for this expedition because of its unique geology and its location: a relatively stable, volcanic island, Tahiti is subsiding at a rate of just .025 mm per year, in the southern Pacific far away from the previously glaciated regions. "Tahiti presents a microcosm of what’s happening globally in paleoclimatology today," he says.


Japanese co-chief scientist Yasufumi Iryu, of Tohoku University, praises the quality of the cores obtained. "The longest continuous coral core we collected is 3.5 meters long," he confirms. "It represents 350 years of coral growth." Providing a reliable climate record with no gaps, massive coral samples--just five percent of the samples obtained--are highly valued by scientific investigators as they reconstruct climate variability and piece together frequency and amplitude of climatic anomalies such as El Niño.

"Our goal to acquire high-resolution archival paleoclimate records has been met," says Camoin. "Examining the massive coral cores retrieved from 40 to 120 meters below sea level, we identified grooved pairs of light and dark bands, each pair measuring a centimeter in width, and each representing one year of growth." According to Camoin, the coral fossils record age in their grooves. "Using radiometric methods, we are able to determine a coral fossil’s age within 30 years."

Iryu, who specializes in El Niño anomalies, agrees that the age and water depth information found archived in the coral reef cores is simple, but crucial. In addition, "we measured live microbes (bacteria) living in the spaces within the deep fossil reefs. These samples," he confirmed, "have been collected and frozen for DNA sequencing."

"Coral reefs comprise the richest ecosystem on Earth," says Camoin, "and the most fragile." But coral reefs are diminishing, he notes: half of all reefs are expected to disappear in the next few decades. "Coral reefs are playing a prominent role in global matter cycles," Camoin asserts.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>