Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Think solar not nuclear for the energy of the future, say scientists

02.03.2006


Solar rather than nuclear energy should be the UK government’s priority in planning future energy production, according to scientists writing today in the journal Nature Materials.



Challenging advocates of the nuclear option, researchers from Imperial College London argue in their Commentary article that photovoltaics, the direct conversion of sunlight to electricity, could match and exceed the nuclear industry’s current output before any new reactor could begin operating.

The UK currently generates 12 gigawatts of electricity from nuclear power stations, around one sixth of the country’s total electricity output. This is the same amount of electricity that it is predicted Germany will generate through photovoltaics by 2012 if it continues to expand its solar energy programme at its present rate.


The researchers write that the UK, which has a similar sunshine profile to Germany, could produce 12 gigawatts of solar electricity by 2023 if production is expanded by 40% per year, less than the world increase of 57% in 2004.

However, in contrast to other developed countries, the UK has recently halted its programme of solar panel installation on 3,500 rooftops halfway through. This compares to the completed installation of 70,000 installations in Japan and 100,000 in Germany. Lead author Professor Keith Barnham of Imperial College London says:

"The UK is clearly taking a very different decision to its industrial competitors and, I believe, a less sensible one. The sun is our largest sustainable energy source and the technology needed to tap into it is very simple. As research continues, this will become an increasingly cheap and efficient way of meeting our energy needs."

One obstacle to the development of a competitive solar energy industry in the UK, according to the article, is a pro-nuclear bias within its scientific and government establishments. Pointing out that the UK Research Councils spent seven times more in 2004-2005 on nuclear fusion research and development than it did on photovoltaic research, Professor Barnham says:

"Fusion is still perhaps 40 years away from being effectively developed and in any case is likely to produce electricity at one quarter the electrical power density which the solar cells that we are working on are already producing in London. It’s absurd that these funding bodies are putting huge amounts of money into something that may not deliver rather than supporting something that already does."

The next generation of photovoltaic cells, known as quantum well cells, now under development convert direct sunlight and can track the sun to keep light focussed on the cell. Early testing suggests that these concentrated systems could produce twice as much electricity per unit area as the conventional systems now in use. Professor Barnham adds:

"These new cells are highly efficient and are based on technologies similar to those used for the amplifiers in mobile phones, so the ability to manufacture them on a large scale is already in place. This is the kind of technology the UK should be investing in if we are serious about producing pollution-free energy."

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>