Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Think solar not nuclear for the energy of the future, say scientists

02.03.2006


Solar rather than nuclear energy should be the UK government’s priority in planning future energy production, according to scientists writing today in the journal Nature Materials.



Challenging advocates of the nuclear option, researchers from Imperial College London argue in their Commentary article that photovoltaics, the direct conversion of sunlight to electricity, could match and exceed the nuclear industry’s current output before any new reactor could begin operating.

The UK currently generates 12 gigawatts of electricity from nuclear power stations, around one sixth of the country’s total electricity output. This is the same amount of electricity that it is predicted Germany will generate through photovoltaics by 2012 if it continues to expand its solar energy programme at its present rate.


The researchers write that the UK, which has a similar sunshine profile to Germany, could produce 12 gigawatts of solar electricity by 2023 if production is expanded by 40% per year, less than the world increase of 57% in 2004.

However, in contrast to other developed countries, the UK has recently halted its programme of solar panel installation on 3,500 rooftops halfway through. This compares to the completed installation of 70,000 installations in Japan and 100,000 in Germany. Lead author Professor Keith Barnham of Imperial College London says:

"The UK is clearly taking a very different decision to its industrial competitors and, I believe, a less sensible one. The sun is our largest sustainable energy source and the technology needed to tap into it is very simple. As research continues, this will become an increasingly cheap and efficient way of meeting our energy needs."

One obstacle to the development of a competitive solar energy industry in the UK, according to the article, is a pro-nuclear bias within its scientific and government establishments. Pointing out that the UK Research Councils spent seven times more in 2004-2005 on nuclear fusion research and development than it did on photovoltaic research, Professor Barnham says:

"Fusion is still perhaps 40 years away from being effectively developed and in any case is likely to produce electricity at one quarter the electrical power density which the solar cells that we are working on are already producing in London. It’s absurd that these funding bodies are putting huge amounts of money into something that may not deliver rather than supporting something that already does."

The next generation of photovoltaic cells, known as quantum well cells, now under development convert direct sunlight and can track the sun to keep light focussed on the cell. Early testing suggests that these concentrated systems could produce twice as much electricity per unit area as the conventional systems now in use. Professor Barnham adds:

"These new cells are highly efficient and are based on technologies similar to those used for the amplifiers in mobile phones, so the ability to manufacture them on a large scale is already in place. This is the kind of technology the UK should be investing in if we are serious about producing pollution-free energy."

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>