Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Think solar not nuclear for the energy of the future, say scientists

02.03.2006


Solar rather than nuclear energy should be the UK government’s priority in planning future energy production, according to scientists writing today in the journal Nature Materials.



Challenging advocates of the nuclear option, researchers from Imperial College London argue in their Commentary article that photovoltaics, the direct conversion of sunlight to electricity, could match and exceed the nuclear industry’s current output before any new reactor could begin operating.

The UK currently generates 12 gigawatts of electricity from nuclear power stations, around one sixth of the country’s total electricity output. This is the same amount of electricity that it is predicted Germany will generate through photovoltaics by 2012 if it continues to expand its solar energy programme at its present rate.


The researchers write that the UK, which has a similar sunshine profile to Germany, could produce 12 gigawatts of solar electricity by 2023 if production is expanded by 40% per year, less than the world increase of 57% in 2004.

However, in contrast to other developed countries, the UK has recently halted its programme of solar panel installation on 3,500 rooftops halfway through. This compares to the completed installation of 70,000 installations in Japan and 100,000 in Germany. Lead author Professor Keith Barnham of Imperial College London says:

"The UK is clearly taking a very different decision to its industrial competitors and, I believe, a less sensible one. The sun is our largest sustainable energy source and the technology needed to tap into it is very simple. As research continues, this will become an increasingly cheap and efficient way of meeting our energy needs."

One obstacle to the development of a competitive solar energy industry in the UK, according to the article, is a pro-nuclear bias within its scientific and government establishments. Pointing out that the UK Research Councils spent seven times more in 2004-2005 on nuclear fusion research and development than it did on photovoltaic research, Professor Barnham says:

"Fusion is still perhaps 40 years away from being effectively developed and in any case is likely to produce electricity at one quarter the electrical power density which the solar cells that we are working on are already producing in London. It’s absurd that these funding bodies are putting huge amounts of money into something that may not deliver rather than supporting something that already does."

The next generation of photovoltaic cells, known as quantum well cells, now under development convert direct sunlight and can track the sun to keep light focussed on the cell. Early testing suggests that these concentrated systems could produce twice as much electricity per unit area as the conventional systems now in use. Professor Barnham adds:

"These new cells are highly efficient and are based on technologies similar to those used for the amplifiers in mobile phones, so the ability to manufacture them on a large scale is already in place. This is the kind of technology the UK should be investing in if we are serious about producing pollution-free energy."

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>