Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildlife researchers identify impacts of contamination in amphibians

22.02.2006


Bill Hopkins, fisheries and wildlife associate professor in Virginia Tech’s College of Natural Resources, and colleagues doing research at the Savannah River Ecology Laboratory and in the field, have demonstrated that amphibians are exposed to contaminants through maternal transfer, as has been proven for other vertebrates.



The research has been published in the National Institutes of Health (NIH) journal, Environmental Health Perspectives ("Reproduction, Embryonic Development, and Maternal Transfer of Contaminants in the Amphibian Gastrophryne carolinensis," by William Alexander Hopkins, Sarah DuRant, a fisheries and wildlife graduate student at Virginia Tech; Brandon Staub, a research technician with the University of Georgia; Christopher Rowe, an environmental toxicologist with the Chesapeake Biological Laboratory, University of Maryland; and Brian Jackson, an analytical chemist at Dartmouth College.)

While working as an assistant professor and research scientist with the Savannah River Ecology Laboratory in Aiken, S.C., Hopkins and colleagues collected dozens of reproductively active female eastern narrow mouth toads located around a settling basin near a coal burning power plant outside of Aiken.


The burning of coal is responsible for the release of mercury, selenium, and other harmful contaminants into the environment. The research team tested the toads and their offspring for the presence of chemical contaminants, and their offspring were examined for developmental abnormalities such as structural malformations and abnormal swimming. "We also looked at clutch size (number of eggs), how many eggs successfully hatched, along with developmental characteristics such as pigmentation and spinal formation," says Hopkins.

Both the adult females and their offspring from the power plant’s settling basin were compared to adults and their offspring from a reference site, which was free from contamination. The research identified particularly high levels of selenium in the offspring from the contaminated site. "Selenium is a fascinating trace element," says Hopkins. "Although it is nutritionally required as a micronutrient, there’s a fine line between its essentiality and toxicity. We found that females from areas near the power plant accumulated astonishingly high concentrations of selenium in their tissues, and then transferred nearly equivalent concentrations of selenium to their young."

The research team uncovered one of the primary means of exposure to environmental contaminants in amphibians. Female amphibians can transfer high levels of certain contaminants to their offspring, resulting in decreased offspring viability.

There have been numerous studies on the detrimental effects of selenium on fish and birds, as well as Hopkins’ study on alligators and lizards. Exposure to selenium is not always obviously harmful to fully-grown vertebrates, but is particularly disruptive to their reproduction function due to its propensity to transfer from mother to egg and its subsequent effects on the developing embryo.

Hopkins’ research is one of the first studies to demonstrate how amphibians are exposed to contaminants through maternal transfer, which is a proven means of exposure for other vertebrates such as fish, birds, humans, and other mammals. "Our study confirms that in amphibians, like all other vertebrate classes, this may be one of the most important means of exposure to some contaminants, such as selenium and polychlorinated biphenyls (PCBs)," says Hopkins. "The presence of reproductive abnormalities in animals that transfer contaminants to their eggs illustrates how maternal transfer is very ecologically relevant."

Hopkins and his research team were successful in showing the effects of chemical contaminants through actual conditions in the field instead of using a lab environment to simulate potential contaminant exposure. "Generally, many amphibian studies on contaminant exposure take place exclusively in the lab or other experimental setting, where the subject is exposed to a controlled dose of contaminants. However, we were able to look at how these toads are more realistically impacted by contaminants in a natural habitat polluted by human activities," Hopkins notes.

Lynn Davis | EurekAlert!
Further information:
http://www.vt.edu
http://ehp.niehs.nih.gov

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>