Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildlife researchers identify impacts of contamination in amphibians

22.02.2006


Bill Hopkins, fisheries and wildlife associate professor in Virginia Tech’s College of Natural Resources, and colleagues doing research at the Savannah River Ecology Laboratory and in the field, have demonstrated that amphibians are exposed to contaminants through maternal transfer, as has been proven for other vertebrates.



The research has been published in the National Institutes of Health (NIH) journal, Environmental Health Perspectives ("Reproduction, Embryonic Development, and Maternal Transfer of Contaminants in the Amphibian Gastrophryne carolinensis," by William Alexander Hopkins, Sarah DuRant, a fisheries and wildlife graduate student at Virginia Tech; Brandon Staub, a research technician with the University of Georgia; Christopher Rowe, an environmental toxicologist with the Chesapeake Biological Laboratory, University of Maryland; and Brian Jackson, an analytical chemist at Dartmouth College.)

While working as an assistant professor and research scientist with the Savannah River Ecology Laboratory in Aiken, S.C., Hopkins and colleagues collected dozens of reproductively active female eastern narrow mouth toads located around a settling basin near a coal burning power plant outside of Aiken.


The burning of coal is responsible for the release of mercury, selenium, and other harmful contaminants into the environment. The research team tested the toads and their offspring for the presence of chemical contaminants, and their offspring were examined for developmental abnormalities such as structural malformations and abnormal swimming. "We also looked at clutch size (number of eggs), how many eggs successfully hatched, along with developmental characteristics such as pigmentation and spinal formation," says Hopkins.

Both the adult females and their offspring from the power plant’s settling basin were compared to adults and their offspring from a reference site, which was free from contamination. The research identified particularly high levels of selenium in the offspring from the contaminated site. "Selenium is a fascinating trace element," says Hopkins. "Although it is nutritionally required as a micronutrient, there’s a fine line between its essentiality and toxicity. We found that females from areas near the power plant accumulated astonishingly high concentrations of selenium in their tissues, and then transferred nearly equivalent concentrations of selenium to their young."

The research team uncovered one of the primary means of exposure to environmental contaminants in amphibians. Female amphibians can transfer high levels of certain contaminants to their offspring, resulting in decreased offspring viability.

There have been numerous studies on the detrimental effects of selenium on fish and birds, as well as Hopkins’ study on alligators and lizards. Exposure to selenium is not always obviously harmful to fully-grown vertebrates, but is particularly disruptive to their reproduction function due to its propensity to transfer from mother to egg and its subsequent effects on the developing embryo.

Hopkins’ research is one of the first studies to demonstrate how amphibians are exposed to contaminants through maternal transfer, which is a proven means of exposure for other vertebrates such as fish, birds, humans, and other mammals. "Our study confirms that in amphibians, like all other vertebrate classes, this may be one of the most important means of exposure to some contaminants, such as selenium and polychlorinated biphenyls (PCBs)," says Hopkins. "The presence of reproductive abnormalities in animals that transfer contaminants to their eggs illustrates how maternal transfer is very ecologically relevant."

Hopkins and his research team were successful in showing the effects of chemical contaminants through actual conditions in the field instead of using a lab environment to simulate potential contaminant exposure. "Generally, many amphibian studies on contaminant exposure take place exclusively in the lab or other experimental setting, where the subject is exposed to a controlled dose of contaminants. However, we were able to look at how these toads are more realistically impacted by contaminants in a natural habitat polluted by human activities," Hopkins notes.

Lynn Davis | EurekAlert!
Further information:
http://www.vt.edu
http://ehp.niehs.nih.gov

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>