Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening for the Fish

22.02.2006


A red grouper pauses on the seabed of Dry Tortugas National Park, Florida, surrounded by gorgonian soft coral, sponges, and algae. (Photo by Rosenstiel School Associate Scientist Jiangang Luo.)


Researchers use high-tech acoustics to make marine-protected areas better

Rosenstiel School fisheries researchers will embark on state-of-the-art research at the end of February to track black and red grouper in the Dry Tortugas National Park to develop a better understanding of species’ movement and habitat require-ments, so they can help more efficiently design and assess future marine-protected areas. Through funding from the National Park Service and transportation support from Yankee Fleet Ferry Service, scientists will be able to conduct this high-tech observation that involves surgically implanted transmitters for approximately a year.

The scientists have designed a field study that uses acoustic telemetry technology to track continuously the movements and habitat use of red and black grouper in the Dry Tortugas National Park, the 46-square-nautical-mile marine reserve. The groupers will be fitted with transmitters or “pingers” that emit unique acoustic codes underwater approximately every 20 seconds. Passive listening stations or receivers will be placed in a submersed array that can detect the transmitters. Receivers will record an acoustic tag’s presence when it is within range, usually 250-1,000 meters, depending on the oceanographic conditions. And, because the tags each emit unique identification numbers and time stamps, individual receivers could potentially detect up to 4,000 different fish at any given time.



A red grouper pauses on the seabed of Dry Tortugas National Park, Florida, surrounded by gorgonian soft coral, sponges, and algae. (Photo by Rosenstiel School Associate Scientist Jiangang Luo.

The scientists are arranging the hydrophone receivers in a grid array, so they can systematically obtain continuous, precise tracks of animal locations, including daily travels and frequently visited areas.

“This study will generate a very valuable set of information,” said Dr. Jerry Ault, professor of marine biology and fisheries at the Rosenstiel School. “If we know how much and what kind of space is needed for these fish -- some of the largest species in the ecosystem – then we can build a better marine reserve. And, that’s exactly what we hope to learn from this research about these grouper we want to protect. If we can get a sense of just how much space they need to have protected, so that they can swim, feed, and multiply freely, we can effectively rebuild their populations as well as the others that make up the coral reef ecosystem.“

In August 2005, the Florida governor and cabinet unanimously approved to implement a management plan for a no-take marine reserve in the Dry Tortugas National Park. The Florida Fish and Wildlife Conservation Commission concurred in early February 2006 with the proposed National Park Service regulations related to marine fishing in the park. The park’s marine reserve, coupled with that in the Florida Keys National Marine Sanctuary, is designed to protect precious coral reefs, fishery, and cultural resources, and to ensure sustainability of intensely exploited regional reef fisheries resources – benefiting the Tortugas, the Florida Keys and beyond.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world’s premier marine and atmospheric research institutions.

Ivy F. Kupec | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>