Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rivers, water and sediments

22.02.2006


Important rivers usually have a number of tributary streams which have their sources in the mountains. It is not just water that goes on the journey but sediments, stones and other material. These materials are transported dissolved, in suspension or deposited as sediment at the bottom of the river.



A research team from the Department of Geodynamics at the University of the Basque Country (EHU-UPV) have begun a study in order to find out the amount of sediments transported from the three main river basins of the province of Gipuzkoa in the Basque Country, i.e. the Urola, Urumea and Deba river basins. The aim is to analyse how factors, both natural and non-natural, affect the presence and the transport of these sediments in these waters.

To this end, the upper basins of the aforementioned rivers were selected: Añarbe in the case of the Urumea river, Barrendiola in the case of river Urola and Aixola in the case of the Deba. These three basins were chosen after an exhaustive analysis of their physical parameters (geology, geomorphology, vegetation, hydrology, soils, and so on). Moreover, the three basins have different characteristics and, thus, are representative of different environments in Gipuzkoa.


The turbidity and the concentration of sediments

In order to analyse these sediments, the water volume/flow of the selected streams are measured as well as the precipitations and turbidity thereof. Ongoing measurements have been taking place for two years now since the project started.

Turbidity depends on the amount of sediments transported in the water. This parameter is measured by means of a probe immersed in the water.

Each time the waters rise due to rainfall, the concentration of the sediments is measured. In order to carry this operation out, a device is immersed in the water to take samples from the stream. When it rains, this sampler is triggered and the bottles are filled with river water. The research worker collects these samples and replaces the emptied bottles for the next rise in water level.

These samples are then taken to the laboratory where they are filtered and the amount of sediment in them calculated. In this way the concentration of the sediments is known.

Although turbidity and the concentration of sediments are related parameters, it is not easy to fix this relationship directly. The size, type, colour and so on of the sediments may vary the turbidity while the concentration remains the same. Once the relation between these two parameters is established, the concentration of sediments can be worked out, given that the turbidity is being measured in an ongoing manner. This relation is usually different for each river basin.

Human activity versus natural basins

The concentration of the sediments transported by rivers is not only related to rainfall and the volume of water in the river; the features of the basin also have a bearing. Given that the three basins chosen for this study have different characteristics (size, lithology, soils, vegetation, land use, climatic conditions, geomorphology, and so on), a comparison of the results demonstrates that the main factors that influence the presence of the sediments for each basin are different.

Moreover, the use that the soil is put to and the human activity in the river basins also have considerable bearing on the results. For example, if trees are felled on a riverbank, the soil becomes unprotected and, thus, rainwater will wash out much more sediment into the stream. Continuously measuring the turbidity of the stream means that we can know the impact of such activities on the quantity of sediments present in the basin. Moreover, if the measurements are taken over a long period of time, it is also possible to observe the duration of the effects of such felling.

Another activity that can vary the amount of sediments is fill-in work. Fill-in earth is not usually compact nor is it protected by vegetation. So, until the earth becomes compact and covered by grass, greater amounts of sediments will reach the basin.

Reservoirs overflowing

The three river basins studied supply water to their respective reservoirs. This is why another objective of the researchers was to find out how much of the sediments reached these artificial lakes. Particles in the water are deposited as sediment at the bottom of these and, little by little, the sediment builds up and will fill the reservoir. Thus, the data also calculates how long these reservoirs can continue to function as such. For example, in the Ebro basin there are reservoirs that have become full of sediment. The situation in our three basins is not so serious; it has not reached the stage of filling the reservoirs.

In future, researchers wish to undertake studies higher up in the basins in order to take measurements of the tributaries there. Moreover, they are planning to analyse the chemical characteristics of the water from these springs and rivers.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=893

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>