Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subtropic Challenges

21.02.2006


Researchers evaluate the effects of warm waters on little fish



Warm Caribbean waters may provide a toasty growing area for larval fish, but that’s not enough to ensure a flourishing fish population. That’s the conclusion of research published in this month’s edition of Marine Ecology Progress Series by Dr. Su Sponaugle and colleagues from the University of Miami Rosenstiel School. The scientists studied the petite, yet eye-catching blue-headed wrasse in the upper Florida Keys to monitor larval settlement success.

“The key to any larval reef fish’s survival is to find food, avoid predation, and get to a reef to settle,” Sponaugle said. Fish larvae remain at sea for several weeks before returning to the reef to settle and join adult populations. What goes on during this time in the plankton is largely unknown. “What we found is that warm summer waters here are conducive to rapid larval growth, but other factors sometimes interfere, leading to highly variable settlement rates.”


According to Sponaugle, it is important to understand how a fish population is replenished if we want to attempt to manage or conserve it. “We need to know how larvae grow and survive. We need to understand not only the biological processes but also the physical processes that create the patterns we observe on the reef,” she said.

Sponaugle, Kirsten Grorud-Colvert from Rosenstiel School, and Deanna Pinkard, now at NOAA Southwest Fisheries Science Center, counted and collected juvenile wrasse over four years. The scientists examined their ear stones or otoliths to learn more about timing of spawning, settlement, and events occurring during larval life. Otoliths bear rings much like a tree, with one new ring deposited daily, allowing the scientists to determine larval age and growth at any given point during larval life.

“The interesting thing about the system here in the Keys is that it’s very dynamic,” Sponaugle said. “In addition to the powerful Florida Current fringing the reefs, recirculating eddies pass by, sometimes delivering larvae to the reef and other times flushing larvae away. While fast larval growth should lead to high rates of larval survival and settlement to the reef, this oceanographic complexity disrupts the relationship. Additionally, the lower nutrients of warm tropical water compared with cooler temperate regions can be a problem for larvae that need more food than usual to sustain their increased metabolism. These challenges are large enough that even with warm water boosting larval development, conditions are not optimum for successful larval settlement.”

The blue-headed wrasse is common in the Caribbean and plays an important ecological role in tropical food webs. Its abundance makes it a useful model for other reef fish larvae. With its distinctive cerulean blue head, white mid-stripe, and yellow hindquarters, it is known for changing its gender at will. A male wrasse usually lives with a harem of a dozen or so solid yellow-colored females. If the male dies, the largest female will transform, over a week, into a male, changing color, sex organs, and behavior to act as the new male over the remaining females.

To access the MEPS journal article, go to: http://www.int-res.com/abstracts/meps/v308/.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world’s premier marine and atmospheric research institutions.

Ivy F. Kupec | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>