Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea microbes active but living on the slow side

21.02.2006


University Park, Pa. Ð Deeply buried ocean sediments may house populations of tiny organisms that have extremely low maintenance energy needs and population turnover rates of anywhere from 200 to 2,000 years, according to an international team of researchers.

"The microbial ecosystem in deeply buried marine sediments may comprise a tenth of Earth’s living biomass, but little is known about the organisms, their physiologies, and their influence on surface environments," says Jennifer F. Biddle, graduate student in biochemistry, microbiology and molecular biology and member of the NASA- sponsored Penn State Astrobiology Research Center.

The populations of interest are two groups of Archaea Ð tiny bacteria-like organisms that are often found in extreme environments such as deep-sea hot vents, inside cows or termites or in deep sediments. The samples were gathered during the National Science Foundation-sponsored Ocean Drilling Program Leg 201 off the coast of Peru.



"The samples showed strikingly elevated concentrations of cells in deeply buried sulfate-methane transition zones," says Dr. Christopher H. House, assistant professor of geosciences, Penn State. "Sulfate methane transition zones are areas where both methane and sulfate diffuse and both compounds are used by local denizens."

The researchers looked for 16S rRNA in the sediment samples and found the transition zones dominated by two groups Ð Marine Benthic Group B and Miscellaneous Crenarchaeotal Group. rRNA is found in a cell’s ribosome and is part of the protein manufacturing mechanism of a cell. The presence of a specific sequence of 16S rRNA distinguishes the types of Archaea and the analysis also identifies Archaea that are active, excluding inactive cells and fossils.

"Other researchers have found DNA analysis of sediments from some sites to indicate that the majority of organisms were Bacteria and not Archaea," says House. "We used methods that identify only active cells and found Archaea."

Another method of identifying the active populations Ð both in size and type Ð looked at intact polar lipids, an indication of live rather than fossil cells.

"These tests and others indicate that there is a sizeable and active archaeal community," says House.

Besides simply knowing that populations of Archaea exist in the deep sediment layers at the sulfate-methane transition zones, the researchers looked at the energy sources for these microbes. Many organisms living in environments with methane use the methane for energy and use the methane’s carbon to grow, repair and reproduce. Looking at the carbon isotopes the researchers found that few if any of these Archaea used methane as a carbon source. They also found that conversion of carbon dioxide to methane was not fueling these Archaea.

"Because the carbon isotopes from the Archaea match the total organic carbon found in the sediment in general, it suggests that the bulk archaeal community uses organic compounds derived from fossil organic matter," says House.

The researchers suggest in this weekÕs issue of the Proceedings of the National Academy of Sciences online, that degradation of organic matter in the sediment, especially the formation of small molecules like acetate and formate, are the likely sources of carbon.

"Real maintenance energies in subsurface environments must be much lower than what has been experimentally determined in laboratory cultures," says Biddle. "If conventional maintenance energies are used, only about 2 percent maximum of the population could survive. However, cellular maintenance energies are expected to be significantly lower when cells divide at extremely low rates."

In fact, the researchers estimate that these Archaea may completely turn over population as frequently as every 70 years, or as infrequently as 2,150 years. They also suggest that the sulfate-methane transition zone is a much better environment than other areas in the sediment and that turnover rates are even lower away from the transition zone.

This is because the Archaea in the transition zone, while not using the carbon from methane oxidation, are still getting some energy from breaking down the methane molecules, energy that is not available in other portions of the sediment.

"These Archaea subsist on the sedimentary organic carbon available and the energy from breaking down methane until they accumulate enough resources to divide," says House. "Surprisingly they require much less energy to maintain and take much longer than expected until they can divide."

This international research team was lead by House, Kai-Uwe Hinrichs from the University of Bremen and Woods Hole Oceanographic Institution, and Andreas Teske from the University of North Carolina. The team included graduate students Biddle, Julius S. Lipp, Mark Lever and Karen Lloyd.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>