Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans making wildlife sick

20.02.2006


Whether it’s monkeys and AIDS or mosquitoes and the West Nile Virus, we’re used to thinking of wildlife as reservoirs for emerging infectious human diseases. But a Canadian mathematical biologist says that it’s time that we turned the tables – as often as not, it’s humans that are making the wildlife sick, often to our own detriment.

It’s a 180-degree turn in perspective that Dr. Mark Lewis says is critical to our understanding of emerging infectious diseases of both wildlife and humans. And, he says, in the case of at least one ocean-based disease outbreak, biology and math are proving to be powerful allies in helping stem the growing tide of an ocean plague.

"With emerging infectious diseases of wildlife today there’s almost always some human component," say Dr. Lewis, an NSERC-funded mathematical ecologist in the mathematics and statistics department at the University of Alberta, Edmonton, Canada.



Dr. Lewis’ lab group has used mathematical mapping tools, often in collaboration with other research groups, to document the spread of pests from the West Nile Virus to the Mountain Pine Beetle in Pacific Northwest forests.

Last year, in a landmark paper, he helped document how commercial salmon farms off Canada’s British Columbia coast are a breeding ground for sea lice, a parasite that then infects young wild Pacific salmon. The research was the first to document the parasitic impact of commercial salmon farms on wild salmon in the Pacific Northwest.

Dr. Lewis and University of Alberta doctoral student Marty Krkosek, who led the sea lice research, are co-presenting their latest sea lice and salmon findings as part of a symposium called The Rising Tide of Ocean Plagues, February 17 at the Annual Meeting of the American Association for the Advancement of Science in St. Louis.

Dr. Lewis is a leader in applying mathematical tools to modelling environmental interactions, from carnivore territoriality to risk analysis related to biological invaders, such as the zebra mussel in the Great Lakes.

When it comes to emerging infectious diseases of wildlife, Dr. Lewis says that public perception and policy needs to move beyond seeing "special cases" to seeing the constant role that people play.

"The way that people often think about emerging infectious diseases is that there are just a lot of special cases. That this happened here and that happened there, without any commonalties," notes Dr. Lewis. "But there’s a growing sense that emerging infectious diseases are really important as a group. So we need the quantitative tools and mathematical theory to be able to study them, including being predictive and diagnostic."

In the case of sea lice, Krkosek, Dr. Lewis and biologist Dr. John Volpe at the University of Victoria, Canada used an innovative live-sampling technique to document the transfer and spreading impact of parasite transmission from a fish farm to wild salmon. "There’s a long and beautiful history of mathematical models for parasite transmission that goes back to the 1970s," Dr. Lewis says. "But the thing that was really unusual here was the spatial structure."

The researchers analyzed the sea lice infection rates of more than 12,000 juvenile wild chum and pink salmon as they headed out to sea from their natal rivers. The infection rates were measured in intervals before and for 60 kilometres after they passed a commercial salmon farm.

"Our research shows that the impact of a single salmon farm is far reaching," says Krkosek. "Sea lice production from the farm we studied was 30,000 times higher than natural. These lice then spread out around the farm. Infection of wild juvenile salmon was 73 times higher than ambient levels near the farm and exceeded ambient levels for 30 kilometres of the wild migration route."

The researchers are now extending their work to assess how this increased parasite load affects the health of the young fish. There’s already initial evidence that this human-induced parasite boost kills many fish. Dr. Rick Routledge from Simon Fraser University and his collaborators recently showed that infection rates similar to those documented by Dr. Lewis will kill juvenile pink and chum salmon.

But, says Dr. Lewis, there’s evidence that some British Columbian salmon farmers aren’t waiting for the final wildlife forensics report to take action. They’re taking the researchers’ sea lice numbers to heart and moving their salmon farms. In an unprecedented agreement, Marine Harvest Canada, a major fish farming company, has agreed to move adult salmon from its farm at Glacier Bay in British Columbia’s Broughton Archipelago to another site further away from a major migration route of emerging wild juvenile salmon.

Says Dr. Lewis: "Ours is basic research, but the mathematical biology clearly gives key results about the contentious issue of fish farm impact on sea lice and wild salmon."

Both Dr. Lewis’ and Marty Krkosek’s research is funded by the Natural Sciences and Engineering Research Council of Canada.

Mark Lewis | EurekAlert!
Further information:
http://www.ualberta.ca
http://www.math.ualberta.ca/~mlewis/index.htm

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>