Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans making wildlife sick

20.02.2006


Whether it’s monkeys and AIDS or mosquitoes and the West Nile Virus, we’re used to thinking of wildlife as reservoirs for emerging infectious human diseases. But a Canadian mathematical biologist says that it’s time that we turned the tables – as often as not, it’s humans that are making the wildlife sick, often to our own detriment.

It’s a 180-degree turn in perspective that Dr. Mark Lewis says is critical to our understanding of emerging infectious diseases of both wildlife and humans. And, he says, in the case of at least one ocean-based disease outbreak, biology and math are proving to be powerful allies in helping stem the growing tide of an ocean plague.

"With emerging infectious diseases of wildlife today there’s almost always some human component," say Dr. Lewis, an NSERC-funded mathematical ecologist in the mathematics and statistics department at the University of Alberta, Edmonton, Canada.



Dr. Lewis’ lab group has used mathematical mapping tools, often in collaboration with other research groups, to document the spread of pests from the West Nile Virus to the Mountain Pine Beetle in Pacific Northwest forests.

Last year, in a landmark paper, he helped document how commercial salmon farms off Canada’s British Columbia coast are a breeding ground for sea lice, a parasite that then infects young wild Pacific salmon. The research was the first to document the parasitic impact of commercial salmon farms on wild salmon in the Pacific Northwest.

Dr. Lewis and University of Alberta doctoral student Marty Krkosek, who led the sea lice research, are co-presenting their latest sea lice and salmon findings as part of a symposium called The Rising Tide of Ocean Plagues, February 17 at the Annual Meeting of the American Association for the Advancement of Science in St. Louis.

Dr. Lewis is a leader in applying mathematical tools to modelling environmental interactions, from carnivore territoriality to risk analysis related to biological invaders, such as the zebra mussel in the Great Lakes.

When it comes to emerging infectious diseases of wildlife, Dr. Lewis says that public perception and policy needs to move beyond seeing "special cases" to seeing the constant role that people play.

"The way that people often think about emerging infectious diseases is that there are just a lot of special cases. That this happened here and that happened there, without any commonalties," notes Dr. Lewis. "But there’s a growing sense that emerging infectious diseases are really important as a group. So we need the quantitative tools and mathematical theory to be able to study them, including being predictive and diagnostic."

In the case of sea lice, Krkosek, Dr. Lewis and biologist Dr. John Volpe at the University of Victoria, Canada used an innovative live-sampling technique to document the transfer and spreading impact of parasite transmission from a fish farm to wild salmon. "There’s a long and beautiful history of mathematical models for parasite transmission that goes back to the 1970s," Dr. Lewis says. "But the thing that was really unusual here was the spatial structure."

The researchers analyzed the sea lice infection rates of more than 12,000 juvenile wild chum and pink salmon as they headed out to sea from their natal rivers. The infection rates were measured in intervals before and for 60 kilometres after they passed a commercial salmon farm.

"Our research shows that the impact of a single salmon farm is far reaching," says Krkosek. "Sea lice production from the farm we studied was 30,000 times higher than natural. These lice then spread out around the farm. Infection of wild juvenile salmon was 73 times higher than ambient levels near the farm and exceeded ambient levels for 30 kilometres of the wild migration route."

The researchers are now extending their work to assess how this increased parasite load affects the health of the young fish. There’s already initial evidence that this human-induced parasite boost kills many fish. Dr. Rick Routledge from Simon Fraser University and his collaborators recently showed that infection rates similar to those documented by Dr. Lewis will kill juvenile pink and chum salmon.

But, says Dr. Lewis, there’s evidence that some British Columbian salmon farmers aren’t waiting for the final wildlife forensics report to take action. They’re taking the researchers’ sea lice numbers to heart and moving their salmon farms. In an unprecedented agreement, Marine Harvest Canada, a major fish farming company, has agreed to move adult salmon from its farm at Glacier Bay in British Columbia’s Broughton Archipelago to another site further away from a major migration route of emerging wild juvenile salmon.

Says Dr. Lewis: "Ours is basic research, but the mathematical biology clearly gives key results about the contentious issue of fish farm impact on sea lice and wild salmon."

Both Dr. Lewis’ and Marty Krkosek’s research is funded by the Natural Sciences and Engineering Research Council of Canada.

Mark Lewis | EurekAlert!
Further information:
http://www.ualberta.ca
http://www.math.ualberta.ca/~mlewis/index.htm

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>